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Soliton approach to the noisy Burgers equation: Steepest descent method
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The noisy Burgers equation in one spatial dimension is analyzed by means of the Martin-Siggia-Rose
technique in functional form. In a canonical formulation the morphology and scaling behavior are accessed by
means of a principle of least action in the asymptotic nonperturbative weak noise limit. The ensuing coupled
saddle point field equations for the local slope and noise fields, replacing the noisy Burgers equation, are
solved yielding nonlinear localized soliton solutions and extended linear diffusive mode solutions, describing
the morphology of a growing interface. The canonical formalism and the principle of least action also associate
momentum, energy, and action with a soliton-diffusive mode configuration and thus provide a selection
criterion for the noise-induced fluctuations. In a “quantum mechanical” representation of the path integral the
noise fluctuations, corresponding to different paths in the path integral, are interpreted as “quantum fluctua-
tions” and the growth morphology represented by a Landau-type quasiparticle gas of “quantum solitons” with
gapless dispersioEo P32 and “quantum diffusive modes” with a gap in the spectrum. Finally, the scaling
properties are discussed from a heuristic point of view in terms of a “quantum spectral representation” for the
slope correlations. The dynamic exponent3/2 is given by the gapless soliton dispersion law, whereas the
roughness exponegt= 1/2 follows from a regularity property of the form factor in the spectral representation.

A heuristic expression for the scaling function is given by a spectral representation and has a form similar to
the probability distribution for Ley flights with indexz. [S1063-651X98)09604-4

PACS numbd(s): 05.40:+j, 05.60+w, 75.10.Jm

I. INTRODUCTION u=Vh, (1.9

This is the second of a series of papers where we analyze
the Burgers equation in one spatial dimension with the pur- h:J’ udx, (1.5
pose of modeling the growth of an interface; for a brief ac-
count we refer td1]. In the first paper, denoted in the fol-
lowing by | [2], we investigated thenoiselessBurgers that is, the Burgers equation governs the dynamics of the
equation[3-6] in terms of its nonlinear soliton or shock |ocal slope of the interface. In Fig. 1 we have sketched the
wave excitations and linear diffusive modes. In the presengrowth morphology in terms of the height and slope fields.

paper we address our main objective, namelyrtosy Bur- The substantial conceptual problems encountered in non-
gers equation in one spatial dimens[ai. This equation has equilibrium physics are in many ways embodied in the
the form Burgers-KPZ equation§l.1) and (1.3), which describe the
self-affine growth of an interface subject to annealed noise
’9_”: »V2U+AuVu+V7, (1.2 arising from flugtuations in the drive or in the_environment
at [9-15. Interestingly, the Burgers-KPZ equations are also

. . , . , encountered in a variety of other problems such as randomly
wherev is @ damping constant or viscosity ana nonlinear e fluids[7], dissipative transport in a driven lattice gas
coqpllng_strength. The equation is drlven_by a conserveqig_1g the propagation of flame fronfa9—21, the sine-
wh|te_ noise termVy, where 5 _has a Gaussmn_ distribution Gordon equationi22], and magnetic flux lines in supercon-
and is short-range correlated in space according to ductors[23]. Furthermore, by means of the Cole-Hopf trans-
' g , / formation [24,25 the Burgers-KPZ equations are also
(n(x. ) (X", ")) =A5(x=x")o(t—t"). (1.2 related to [the p?oblem of g directed pglyrr[%,ZT_I or a
In the context of modeling a growing interface the Kardar-quantum particle in a random mediy28,29 and thus to the

Parisi-Zhang equatiofKPZ) [8] for the height fieldh, theory of spin glassel80-32.
In contrast to the case of the noiseless Burgers equation
dh 5 A 5 discussed in paper | where the slope field eventually relaxes
ot vVoh+ E(Vh) t7, (1.3 due to the dissipative termV2u, unless energy is supplied

to the system at the boundaries, the noisy Burgers equation

is equivalent to the Burgers equation by means of the relafl.1) describes an open nonlinear dissipative system driven

tionships into a stationary state with random energy input at a short
wavelength scale provided by the conserved n¥igeln the

stationary regime the equation thus describes time-

*Permanent address. independent stochastic self-affine roughened growth. In the
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h TABLE I. Exponents and universality classes.
'ﬂ Universality class 14 z
PANA AN G N WA N
EW 1/2 2
Burgers-KPZ 1/2 3/2

roughness or wandering exponéntharacterizing the slope

correlations for a stationary profile anil) the dynamic ex-
u=vh ponentz, describing the temporal scaling in the stationary

regime[41]. The slope fieldu has the scaling dimension 1

— . For largew the scaling functiorf (w)ocw ™ 2(2=9/Z: for

smallw f(x)occonst.

Two properties determine the scaling exponents, namely,

a scaling law and an effective fluctuation-dissipation theo-
N N I rem. Like the noiseless or deterministic Burgers equation

discussed in paper I, the noisy equation is also invariant un-

FIG. 1. We depict the general growth morphology for a 1D qer 3 Galilean transformatidi7, 8]
interface in terms of the slope field and the height fieldh (arbi- '

trary units. X—X— \Upt, (1.8

linear case forn=0 the Burgers equation reduces to the u—u-+ug. (1.9

noise-driven Edwards-Wilkinson equatioBW) [33]
Since the nonlinear coupling strength here enters as a

ou_ ) structural constant of the Galilean symmetry group it trans-
E vWou+ Vo, (1.6 forms trivially under a scaling transformation and combined
with the existence of a nonvanishing fixed point for the ef-
here for the slope field. Owing to the absence of the non- fective coupling strengti\?A/v® we infer the scaling law
linear growth termuVu the cascade in wave number space[7-10|
is absent and the correlations, probability distributions, and
scaling properties are easy to derf3d]. Furthermore, since {+z=2, (1.10

the EW equation is compatible with a fluctuation-dissipation

theorem, it actually describes the dynamic fluctuations in af€!ating ¢ and z. Furthermore, noting that the stationary
equilibrium state with temperatur&/2» (in units such that okker-Planck equation for the Burgers equatidnl) is

ke=1) and as a consequence does not provide a proper d§°ved by a Gaussian distributig, 11,27
scription of a growing interface. On the other hand, the pres- ”

ence of the nonlinear growth ternuVu in Eq. (1.1) renders P(u)ocexp{ X f dxu?
it much more complicated and much richer. The term filters

the input noiseV7 and gives rise to interactions between . d denbf it foll h . ind d d
different wave number components leading to a cascade thajocpen enof \ it fo OW.St atu_ls an indepen ent random
variable and that the height variatieaccording to Eq(1.5)

frri]élunt?oenss t;?;fr:]tPh(ee S“(r:] i};]rgEF\)/(/OE:;ies and the probability dISp')en‘orms random walk, corresponding to the roughness ex-

The Burgers-KPZ equations owing to their simple form ponent/=1/2, also in the linear I.EW case. F“’!“ the scaling
accompanied by their very complex behavior have served agvg//él.Il())ﬂ\]/vel'subs?\/li/ently ‘jbfj‘z'“ thcf gyznarrr]nc e>§{po'n?nt
paradigms in the theory of driven and disordered systems,~ . n the finear casg=1/2 andz=2, characteristic
and have been studied intensivé®-15]. One set of issues of diffusion. In Table | we have _summf_irlzed the exponents
that has have been addressed is the scaling propEBies for the EW and Burgers-KI_DZ un|versal[ty classes. .

38]. According to the dynamic scaling hypothe$g5,38 The standard tool used in the analysis of the scaling prop-

- : : : : erties of nonlinear Langevin equations of the type in Egs.
supported by numerical simulations and the fixed point struc- . i o
ture of a renormalization group scaling analy$ig,8], the (1.D~(1.3 is the dynamic renormalization groufDRG)

slope fieldu is statistically scale invariant in the sense thatmethOOI [35]. This _approach IS based on an expansion in
the self-affine rescaled’ (x,t)=b~¢~Du(bx,b) is statis- POWers of the nonlinear couplings and a subsequent term by
tically equivalent tou(xt) ' whereb is a sciale parameter term average over the noise, implementing the statistical av-

X ) R " _erage. Power counting or the degree of divergence of the
More precisely, the scaling hypothesis implies the following bati . ically identifi itical di
dynamical scaling form for the slope correlation function in perturbative corrections typically identifies a critical dimen-

: . ’ sion separating regions where infrared convergent perturba-
the stationary regimg7,8,38—-4 tion theory holds yielding mean field behavior from regions
U, HUX, "ty =x—x'|2E D (|t—t'|/|x—x'|?). with infrared divergent expansions. In the divergent regions
the expansion is regularized l§i) a momentum shell inte-
gration in the short wavelength limit, corresponding to a
The scaling behavior in the long wavelength—low frequencywave number version of the Kadanoff construct{@3], or
limit is thus governed by two scaling dimensior$; the (i) more powerful field theoretical dimensional regulariza-

: (1.11
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tion scheme$42]. The DRG thus allows for an organization posed in[11,60, and considered further {62], on the basis

of the divergent terms and leads to renormalization groumf the equivalence between the Liouville operator in the

equations for the effective parameters in the theory, often itMaster equation describing the evolution of the one-

terms of an epsilon expansion about the critical dimensiongimensional driven lattice gas, or the equivalent lattice inter-

yielding expressions for the critical exponents and informaface solid-on-solid growth model, and a non-Hermitian spin

tion about the scaling functions. 1/2 Hamiltonian. The quantum chain model has been treated

For the Burgers-KPZ equations the scaling phenomenolby means of Bethe ansatz methdd4,60—63 and the dy-
ogy is now well understoodi7,8,43,44. The expansion in  namic exponent=3/2 obtained from the finite size mass
powers of the nonlinear coupling strengthin conjunction  gap scaling. In Il we pushed the analysis further and, con-
with a term by term noise average and an appropriate regustructing a harmonic oscillator representation valid for large
larization scheme, e.g., a momentum shell integration, yieldgpin in combination with a continuum limit, we derived a
DRG equations for the scaling behavior in terms of an effecHamiltonian description and a set of coupled field equations
tive coupling strengtly=\*A/+®. The lower critical dimen-  of motion for the spin field, corresponding to the slape
sion isd.=2, also following from simple power counting. and a conjugate “azimuthal” angle field replacing the noise.
Below d.=2 there appear three renormalization group fixedThe field equations admit spin wave solutions, corresponding
points: An infrared-unstable Gaussian fixed pogit=0, to the linear diffusive modes and, more importantly, nonlin-
corresponding to vanishing coupling strength, describing @ar localized soliton solutions, describing the growing steps
smooth interface governed by the EW equation, an infraredin the original KPZ equation or the solitons or shocks in the
stable strong coupling fixed poig* #0, characterizing a Burgers equation. We also derived the soliton dispersion law
rough interface, and an infrared-unstable fixed pointgdr  and after a quasiclassical quantization identified in a heuris-
=, The exponents assume nontrivial values fonaH0. In  tic manner the elementary excitations of the theory. From the
d=1 an effective fluctuation-dissipation theorem equivalentdispersion law we deduced the dynamic exporeat/2,
to the Gaussian form in Eq1.11) is operative, and together characteristic of the zero temperature fixed point of the
with the Galilean invariance, implying trivial scaling af “quantum theory.” The picture that emerged from our
the renormalization group equations yield the exponents imnalysis was that of a dilute quasiparticle gas of nonlinear
Table | associated with the infrared-stable nontrivial strongsoliton modes yielding=3/2 and a superposed spin wave
coupling fixed poin{7,8,43,44. Aboved.=2 the role of the gas, corresponding ta=2, the dynamic exponent for the
fixed points is reversed and we have an infrared stable vaninear case. In Il we also briefly discussed the operator alge-
ishing Gaussian fixed poing*=0, corresponding to a bra associated with the Hamiltonian representation and de-
smooth interface described by the EW equation and a norved the field equations by means of a canonical represen-
trivial infrared-unstable fixed poirg* # 0, which can be de- tation of the Fokker-Planck equation for the equivalent
termined by an epsilon expansion abdyt=2 just as in the Burgers equation. Whereas the Bethe ansatz investigations
case of the nonlinear model[42]. This DRG phenomenol- by their nature are restricted to special values of the coupling
ogy indicates the existence of a kinetic phase transition fronstrength, corresponding to the fully asymmetric exclusion
a weak coupling smooth phase for smglto a strong cou- model [57], our analysis is valid for general coupling
pling rough phase that does not seem accessible by analyticstrength and thus constitutes an extension of the Bethe ansatz
methods[43—-49; however, the scaling exponents in the method to the general case of a continuum field theory. The
strong coupling phase has been determined numericallgnalysis in Il was in many respects incomplete and prelimi-
[9,46] and by self-consistent mode coupling thep4dy—49.  nary but it did indicate that the strong coupling fixed point
The issue of an upper critical dimension has also been coriehavior is intrinsically associated with the soliton modes in
sidered and, for example, proposed todse4 in Ref.[50]; the Burgers equation since they both provide aspects of the
the issue, however, remains controversial and we refer tgrowth morphology and also, independently, yield the dy-
[50] for further referencing. namic exponent.

Although the scaling exponents associated with the strong Here we present anified approach to the noisy Burgers
coupling fixed point ind=1 are exactly known, owing to equation based on the Martin-Siggia-RdMSR) technique
Galilean invariance and the fluctuation-dissipation theoremin functional form [65—70. This method supersedes the
and confirmed to second loop orddB,44], the scaling func- analysis in Il and does not make use of the mapping to a spin
tion does not follow from a simple DRG analysis. In fact, chain via a solid-on-solid model and therefore the implicit
unlike the driven lattice gas, which can be analyzed by arassumption of persistent universality classes under the map-
epsilon expansion below=2, this is not the case for the pings. Clearly, the different formulations are basically
Burgers-KPZ equations, which are related to the continuunequivalent arising as they do from the same basic stochastic
limit of the lattice gas. On the other hand, the scaling func-growth problem. The equivalence also indirectly demon-
tion has been accessed numericfi§—53 and by means of strates that the scaling properties of the different models, i.e.,
an analytical mode coupling approafb¢,55, based on a the solid-on-solid model, the spin chain, and the field formu-
self-consistent one-loop calculation, i.e., to first ordekin lation, fall in the same KPZ-Burgers universality class. The

In a recent letter, denoted in the following by[86], we  present functional path integral method, which also can be
approached the strong coupling fixed point behavior from theseen as a generalization of the stationary distributiofl)
point of view of the mapping of the Burgers equation onto anto the time-dependent nonlinear case, provides a many-body
equivalent solid-on-solid or driven lattice gas mofEL,57],  description of the morphology of a growing interface in
which furthermore maps onto a discrete spin 1/2 chain modderms of soliton excitations and also gives insight into the
[58,59. The quantum spin chain approach has been proscaling behavior. Below we highlight some of our results.
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(i) The path integral formulation yields a compact de-with a somewhaad hocmode coupling approach the scaling
scription of the noisy Burgers equation and provides expresfunction, we believe that the saddle point contributions are
sions for the probability distributions and correlation func- essential ingredients in elucidating both the physical mor-
tions. Reformulated as a canonical Feynman-type phagghology and the scaling properties of the strong coupling
space path integral the approach allows &principle of fixed point.
least action Hence the weight of the different paths or inter-  The path integral representation of the noisy Burgers
face configurations, corresponding to the noise-induced inequation presented here is equivalent to a full-fledged one-
terface fluctuations, contributing to the path integral are condimensional non-Hermitian non-Lagrangian field theory and
trolled by an effective action. The role of the effective requires for its detailed analysis some advanced field theo-
Planck constant is here played by the noise correlatiometical techniques and methods from quantum chaos. In the
strengthA. The action in the path integral thus plays the present context we choose, however, a somewhat heuristic
same role for the dynamical configurations as the Hamilapproach to the path integral in order to elucidate the emerg-
tonian in the Boltzmann factor for the static configurations injng simple physical picture of a growing interface. This ap-
equilibrium statistical mechanics. proach then also serves as a tutorial introduction to the field

(ii) In the asymptotic weak noise limit the principle of {hegretical treatment to be presented elsewhere.
least action implies that the dominant configurations arising \we also wish to comment on some recent work on the
from the solutions of the saddle point field equations correyiyen Burgers equation with noise at large length scales

sponq to a dilute nonlinear spliton gas W.ith superposeq ”.ne%odeling forced turbulence. This problem has been treated
diffusive modes. The canonical formulation and the pr|nC|pIeusing a variety of methods such as operator product expan-

of least action furthermore allow a dynam_lcal o!escrlptlonsions[n]y instanton calculation&2—75, and replica meth-
and associate energy, momentum, and action with the SOII6ds[76] In this context the nonperturbative instanton meth-
tons and the diffusive modes. ) P

(iiif) The path integral formulation permits a “quantum ods usg_d n °.fdef to determine the tail of the yelocny
mechanical” interpretation in terms of an underlying non- probability distribution are related to the present soliton ap-

Hermitian relaxational “quantum mechanics” or “quantum Proach in that they are also based on a saddle point approxi-
field theory.” The noise-induced fluctuations here corre-mation to the MSR functional integral and some of our re-
spond to “quantum fluctuations” and the fluctuating growth _sults to be presented later have also been derived within the
morphology is described by a Landau-type quasiparticle gastanton approach.
of nonlinear “quantum solitons” and linear “quantum dif-  The present paper is organized in the following way. In
fusive modes.” In the height field this corresponds to a mor-Sec. Il we discuss the simple case of the linear Edwards-
phology of growing steps with superposed linear modes. Th&Vilkinson equation, mainly in order to emphasize the non-
“quantum soliton” dispersion law is gapless and character-perturbative nature of the noise as regards the stationary
ized by an exponent 3/2; the “quantum diffusive mode” driven regime. Since the soliton modes in the noisy Burgers
dispersion law is quadratic with a gap in the spectrum proequation turn out to be of crucial importance in understand-
portional to the soliton amplitude. ing the morphology and scaling properties, we summarize in
(iv) In the present formulation the scaling properties as-Sec. Il the results obtained in | concerning the solitons and
sociated with the “zero temperature” fixed point in the un- diffusive modes in the noiseless Burgers equation. In Sec. IV
derlying “quantum field theory” follow as a by-product we set up the path integral formulation for the noisy Burgers
from the soliton and diffusive mode dispersion laws and theequation in terms of the Martin-Siggia-Rose techniques in
spectral representation of the correlations. The dominant exXunctional form. In Sec. V we perform a shift transformation
citation in the long wavelength—low frequency limit identi- of the path integral to a canonical Feynman path integral
fies the relevant universality class. The present many-bodform and discuss the canonical structure and the associated
formulation yields the known exponents. The dynamic exposymmetry algebra. Section VI is devoted to an asymptotic
nentsz=3/2 andz=2 are associated with the soliton and weak noise saddle point approximation and to the derivation
diffusive mode dispersion laws, respectively, whereas thef the deterministic coupled field equations replacing the
roughness exponerdt=1/2 follows from a regularity prop- Burgers equation. In Sec. VIl we solve the field equations
erty of the form factor in the spectral representation. Theand derive nonlinear soliton and linear diffusive mode solu-
many-body formulation also explains the robustness of thdions. In Sec. VIl we discuss the dynamics of the solitons
roughness exponent under a change of universality class aallowing from the principle of least action. The dominating
provides a heuristic expression for the scaling function thamorphology of a stochastically growing interface can be in-
has the same structure as the probability distribution foterpreted in terms of a dilute soliton gas; this aspect is dis-
Levy flights. cussed in some detail in Sec. IX. The fluctuation spectrum
(v) From a field theoretical point of view we identify the about the soliton solutions is basically given by the path
noise strength\ as the effectivesmall parameter Further-  integral, however, in Sec. X we take a heuristic point of view
more, the fundamental probability distribution or path inte-and discuss the fluctuations as “quantum fluctuations” in the
gral has anessential singularityfor A=0. Hence our ap- underlying non-Hermitian “quantum field theory.” Section
proach is based onrnperturbative saddle point or steepest Xl is devoted to a discussion of the scaling properties and
descent approximatioto the path integral. Although the dy- universality classes on the basis of the “elementary excita-
namic renormalization group method based on an expansidions” in the “quantum description.” We also present a heu-
in the effective coupling strength=\?A/»® and thus inA ristic expression for the scaling function. Finally in Sec. Xl
yields the scaling exponents correctly and in combinatiorwe present a discussion and a conclusion.
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[l. THE LINEAR EDWARDS-WILKINSON EQUATION: slope fluctuations approach the constant val2v. For A
THE ROLE OF NOISE —0, to,—o and the system never enters the stationary re-

Here we review the properties of the linear case describegime‘
prop The “elementary excitation” is the diffusive mode

by the noise-driven Edwards-Wilkinson equati@h6), in u(k,t)cexpEuk®).  In frequency  space u(k,w)

glf;l)r;gl:c:glrdlr:h(i)srd;(;l;gtiilﬁﬁgdg}\?et: %;ole of the noise. For the: Jdt explwt)u(k,t) and the slope correlation function as-

sumes the Lorentzian diffusive form, characteristic of a hy-
drodynamical mode,

M vty 2.1
St YVutvy 2.0 o
u(k,)u(—k,—w))=———57, 2.8
with the noisey correlated according to Eq1.2), i.e., {utk wu( % o+ (vk?)? 8
X, D) p(x",t")=A8(x—x")s(t—t"). (2.20  with diffusive poles atwl==*ivk? a strength given by
7 n K
_ _ A/v?k? and a linewidthvk®. We note that in the stationary
Equation(2.1) has the form of a conservation law regime both the decaying and growing modes:exp
P (1K), contribute to the stationary correlations. Time rever-
M_ —Vj (2.3  sal invariance is thus induced from the microscopic revers-
ot ibility of the noise-driven system. In the transient regime for

t<7(Kk) the initial conditions enter and we must choose the
solution propagating forward in timeyxexp(— vk?), in or-
(2.4) der to satisfy causality.
From Eq.(2.8) we also obtain the scaling function

with current
j=—vVu—n.

We note that with average vanishifgu at the boundaries
the conservation law implies that the average off-set in the
height, fVhdx, is conserved.

In wave number space|k,t) = fdx exp(—ikx)u(x,t), and
solving Eq.(2.1) as an initial value problem averaging over
the noise according to E@2.2) we obtain for the slope cor-
relations

f(w)=(A2v)(4mv) Y~ exd — 1/4vw], (2.9

in accordance with the general form in Ed.7) yielding the
EW exponents in Table | defining the EW universality class.
For largew f(w)~w~ Y2 for smallw f(w)—0 but with an
essential singularity foiw=0. In frequency—wave number
space the scaling form is

(u(k,Hu(=k,t")) =[(u(k,0u(—k,0));— (A/2v)]
xexg — (t+t") vk?]
+(AR2v)exd —|t—t'|vk?]. (2.5

(u(k,w)u(—k,— w)) =k~ 2g(w/k?) (2.10

and we directly infer the scaling function

Here(---); denotes an average over initial values, which is g(w)= TTwe (2.1
assumed independent of the noise average. The basic

time scale is set by the wave number dependent lifetimg, rig. 2 we have shown the slope correlation function and
7(k) =1/vk®, which diverges in the long wavelength limit o scaling functiong andg in the EW case.

k— 0, characteristic of a conserved hydrodyr_lamical mode. |4 contrast to the noisy Burgers equation, the EW equa-
We note that at short times comparedr{&), which sets the i does not provide a proper description of a growing in-

time scale for the transient regim@i(k,t)u(—k,t")) isnon-  terface. This is seen by expressing E2) in the form
stationary and depends on the initial correlations, whereas at

long timest,t’> 7(k) the correlations enter a stationary, time Ju , OF
reversal invariant regime and depends only|bat’|. For Gt vV EJFV??, (212
vanishing initial slopeuy(k,0)=0, we obtain in particular the

mean square slope fluctuations where the effective free energy is given by

A
(uk D= {1-eqi-2urk)}), (29 F=3 j dxi (213

which approaches the saturation valu®v for t> (k).

More precisely, it follows from Eq(2.5) that for fixedt
—t’ the transient term can be neglected at times greater th
a characteristic crossover tintg, of order

Using the fluctuation-dissipation theorem to relate the noise

strength to an effective temperaturét then follows that the

FEw equation describes time-dependent fluctuations in an

equilibrium system with temperaturé=A/2v and with an
teo~ (1/vk3)IN(L/A), 2.7) equilibr'ium distribution given by the Boltzmann factor in Eq.

(1.1), i.e.,

depending also on the noise strendthThis time thus de- )

i i i 14

fln_es t_he onset of the_ statlon_ary regime. Rerr(k), tg P(U)sexg — —F|. (2.14

noise-induced fluctuations built up and the mean square A
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(a) <uu> (k) tial in order for the system to leave the transient reganall

and to enter the stationary regime where the system is time

reversal invariant, as, for example, reflected in the evenness

in w in the slope correlation functiof2.8). In the absence of
the noise the system simply decays owing to dissipation un-

— - oK less it is driven by deterministic currents at the boundaries.
Imposing the noise and driving the system stochastically is
thus asingular process, as reflected mathematically by the
essential singularity in the distributiq®.14).

- Although the above observation of the nonperturbative
role of the noise strength is a trivial statement in the linear
case where is just reflects the structure of the Boltzmann

(b) f factor, we will later show that in a more complete theory of

a growing interface, described by the nonlinear noisy Bur-

0.12% gers equation, it is essential to take into account nonpertur-

bative contributions in the noise strengih

12
[ll. THE SOLITON MODE IN THE NOISELESS BURGERS
EQUATION

It turns out that the soliton excitation in tieiselesBur-
gers equation when properly generalized play an important
role in the understanding of the growth morphology and
strong coupling behavior of the noisy Burgers equation. In |
we discussed in some detail the soliton and diffusive mode
© g solutions in the noiseless Burgers equation and performed a
linear stability analysis. Here we briefly summarize those
aspects of the analysis in | that will be of importance in the

Wit

A
v discussion of the noisy case.
The noiseless or deterministic Burgers equation has the
. -2 form [3—6]
Ju 5
E:VV u+AuVu, (3.1

= W
and is a nonlinear diffusive evolution equation with a linear

FIG. 2. In(a) we depict the slope correlation function for the term controlled by the damping or viscosityand a nonlin-
diffusive mode in the linear EW case. The Lorentzian is centerecear mode coupling term characterizedMyin the context of
aboutw=0 and has the “hydrodynamical” line widthk? vanish-  fluid motion the nonlinear term gives rise to convection as in
ing in the long wavelength limit. Irib) we show the scaling func- the Navier Stokes equation; for an interface the term corre-
tions f for the space and time-dependent slope correlations. Fosponds to a slope-dependent growth.
largew f falls off asw~ %2, for smallw f—0 with an essential Under time reversat— —t and the transformation—
singularity forw=0. f is peaked at the value-0.12A/v for w —u the equation is invariant provided— — ». This indi-
=1/2v. In (c) we have shown the scaling functignfor the wave  cates that the linear diffusive term and the nonlinear convec-
number—frequency-dependent correlatignbas a Lorentzian form  tive or growth term play completely different roles. The dif-
with height A/ and width~ v (arbitrary unit3. fusive term is intrinsically irreversible whereas the growth

term corresponding to a mode coupling leads to a cascade in

We note here in the linear case that the noise streagth wave number space and generates genuine transient growth.
seems to play a special role. Wheréasnters linearly in the The transformatiori— —t is absorbed iru— —u or, alter-
correlation functionuu)(k, ), the limit of vanishing noise natively, \— —X\, corresponding to a change of growth di-
strength,A—0, appears as amssential singularityin the  rection. We also note that the equation is invariant under the
stationary distributiori2.14). Since the distributiof?(u) ap-  parity transformatiorx— — x providedu— —u. This feature
propriately generalized to the time-dependent case is this related to the presence of a single spatial derivative in the
generator for the correlation functigmu) and higher cumu-  growth term and implies that the equation only supports soli-
lants, it is clearly the fundamental object and the role of theons or shocks with one parity, that igght hand solitons.
noise strengtk as a nonperturbative parameter an important=inally, the Burgers equation is invariant under the Galilean
observation. More precisely the point is the following: symmetry groug1.8) and(1.9), that is a Galilean boost to a
Whereas the damping constantogether with the relevant frame moving with velocity\u, is absorbed by a shift in the
wave numbek define the time scale for the transient regimeslope field byu,.
where the system has memory and evolves forward in time The irreversible and diffusive structure of E@.1) im-
in an irreversible manner, the presence of the noise is esseplies that an initial disturbance eventually decays owing to
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the damping termyV2u. In the linear case the slope field

a,
decays by simple diffusion(x,t)=exp(— vk’t)exp(+ikx) as " ®
discussed in Sec. Il. In the presence of the nonlinear mode
coupling term the equation also supports localized soliton or y Slope u,x
kink profiles[77-8Q with given parity. In the static case the -—
symmetric positive parity oright handsoliton has the form slope u-x
u(x)=u, tanfkyx—xo)1, 3.2 <
0

ks=\u,/2v. (3.3
We have introduced the characteristic wave numheset- u ()
ting the inverse length scale associated with the static soli-
ton, X, denotes the center of mass position. The width of the
soliton is of order I, and depends on the amplitude . In
the inviscid limit v—0 or for strong couplingh —o, the
wave numbek,— o and the soliton reduces to a sharp shock u,
wave discontinuity. I

Boosting the static soliton in Eq3.2) to a finite propa- 7% X
gation velocityv and at the same time shiftingwe obtain, Y- e
denoting the right and left boundary values oy, the soli- T
ton solution FIG. 3. We show a single moving soliton profile propagating to
the left and the corresponding smoothed cusp in the growth profile.
uptu_  Up—u_ This configuration is driven by currents at the boundaries, corre-
u(x,t)= 2 + 2 sponding to nonvanishing.. and is persistent in timéarbitrary

units).

N
Xtan)‘{ﬂ(m—u_)(x—vt—xo) (34 An asymptotic analysis of the noiseless Burgers equation

in the inviscid limit »— 0 [81] shows that an initial configu-

with velocity v given by the soliton condition ration breaks up into a “gas” of propagating and coalescing
kinks connected by ramp solutions of the fomm:const
2v —x/\t. This allows for the following qualitative picture of
Up+U_=—~-. (39 the transient time evolution: Although the nonlinear mode

coupling term is incompatible with a proper superposition

We note that the soliton conditiqB.5) is consistent with the  principle we can still along the lines of the evolution of
fundamental Galilean invariance and remains invariant undentegrable one dimensional evolution equati¢ig] envis-
the transformatiomw —uv + \ug andu. —u. —ug. Also, un- age that an initial configuration “contains” a number of
like the case for the Lorentz invariagt* and sine-Gordon right handsolitons connected by ramps. In the course of time
evolution equationg77], the propagation velocity in the the solitons propagate and coalesce. Superposed on the soli-
present case is tied to the amplitude boundary values of th®n gas is a gas of phase-shifted diffusive modes. As dis-
soliton—a feature of the Galilean invariance. In Fig. 3 wecussed in | the gap in the diffusive spectrum can be associ-
have depicted theight hand soliton solution given by Eq. ated with the current flowing towards the center of the
(3.4) and the associated height fietid solitons. The damping of the configuration predominantly

In the linear case fok =0 case the diffusive modes with takes place at the center of the soliton whenearies rapidly
dispersion

wi=—ivk? (3.6

“exhaust” the spectrum of relaxational modes. Rc# 0 the
soliton profile acts as a reflectionless Bargman potential giv-
ing rise to a bound state at zero frequency, corresponding to
the translation mode of the soliton—the Goldstone mode re-
storing the broken translational invariance, and a band of K
phase-shifted diffusive scattering mod@&§]. The resulting /
change of density of states is in accordance with Levinson’s .
theorem in that the potential traps a bound state and depletes 7
the continuum of one state. In the presence of the soliton the == k

diffusive modes furthermore develop a gap in the spectrum FIG. 4. We show the diffusive dispersion law in the presence of

of wy as depicted in Fig. 4, a soliton. The gap in the spectrum is givenik=\2u?/4v where
) 2, 12 u, is the soliton amplitude. The dashed line indicates the gapless
o=~ iv(k“+ks). 3. spectrum in the linear cadarbitrary units.
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h techniques provides the appropriate formal and practical lan-
parabolic segment guage for such an approaph5-70Q.

Our starting point is the noisy Burgers equatidnl) for
\/_\/ the fluctuating slope field, i.e.,

cusp Ju
EzvV2u+)\uVu+V1], 4.1)

which has the structure of a conserved nonlinear Langevin
equation with current

. A
u j:—Vu—Euz—n. 4.2
. For the noise we assume a Gaussian distribution
kink *
ramp A P(7n)xexg — oA dxdtn(xt)?|, 4.3
\JC\/

where 7 is correlated according to EqL.2), i.e.,

(n(xX, 1) p(x",t"))y=A8(x—x")8(t—t"). (4.4

Wn«r&w&wﬂw%v&»x Unlike the transient relaxation of an initial value configu-
ration described by the deterministic Burgers equation, the
FIG. 5. We here depict the transient evolution of the slope fieldnoiSy Burgers equation is driven continuously by the con-
u from an initial configuratioru, in the case of the noiseless Bur- gan/ed nois&V 7, corresponding to a fluctuating component
gers equation. We have also shown the evolution of the associate&: the curreni in Eq. (4.2). Energy is fed into the system via
height fieldh. The transient morphology consists of propagatingyhe nojse and dissipated by the linear damping term. The
right handsolitons connected by ramjarbitrary units. nonlinear mode coupling gives rise to a cascade in wave
number space corresponding to “dissipative structures” in
the growth morphology. This mechanism changes the prob-
ability distributions and associated correlatiamsoments,
caling exponents, and scaling functions from the EW case
n Sec. Il. In other words, Eq4.1) acts as a nonlinear box
that transforms the input noidéz, to an output slope field.
In the Martin-Siggia-Rose techniques the probability dis-
IV. PATH INTEGRAL REPRESENTATION tribution for the slope fieldP(u) and the correlationéuu),,
OF THE NOISY BURGERS EQUATION are conveniently derived from an effective partition function

In this section we begin the analysis of the noisy BurgerL" generatof42]
equation. In our discussion in Sec. Il of the linear EW equa-
tion we noticed that the noise strengthenters in a nonper- _ ;
turbative way in the stationary distribution in E¢L.11). Z(p) <ex;{|f dxdtux,t) w(x.t)
Whereas this, of course, is a trivial observation in the linear
case since the EW equation describes fluctuations in equilitHere w(x,t) is a generalized chemical potential or external
rium andA =T, that is the singularity structure is the same asconjugate field coupling to the slope fieldx,t) and(---),
the low-T limit of the Boltzmann factor exp¢E/T), the pres-  denotes an average over the input najsémplementing the
ence of the nonlinear mode coupling growth term in thenonlinear stochastic relationship provided by the Burgers
noisy Burgers equation renders the situation much morequation(4.1). In terms ofZ we have, for example, the prob-
subtle. We are now dealing with an intrinsically nonequilib- ability distribution P(u)=(8(u—u(x,t))),,,
rium situation. The noise drives the system into a far-from-
equilibrium stationary state and equilibrium statistical me-
chanics does not apply. On the other hand, from our study of P(u(x,t))= f H du
the noiseless Burgers equation, we have learned that the soli- Xt

thus enhancing the damping temv?u. We also note that
only parity breakingight handsolitons are generated in the
noiseless Burgers equation. In Fig. 5 we have shown th
transient evolution of the slope field and the associate
height field.

> . (4.5
n

ton excitations play an important role in the dynamics of the

morphology of a growing interface and is a direct signature Xex;{ - if dxdtu(x,t) w(x,t)

of the nonlinearity. The issue facing us is then how to in-

clude both the nonperturbative aspects of the noise and the XZ(u(X,1)) (4.6)

nonlinear soliton structure in a consistent way. It turns out
that the functional formulation of the Martin-Siggia-Rose and the correlation function
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V. CANONICAL TRANSFORMATION
} ;o (4.7 TO A HAMILTONIAN FORM:
n=0 PHASE SPACE PATH INTEGRAL SYMMETRIES

oZ(p)
Su(X,t)du(x",t")

(u(x,t)u(x’,t’))=—[

. ) ) o By inspection of the path integral in Eq#.9) and(4.10
higher moments are derived in a likewise manner. In order tQue notice that it has the same structure as the usual phase
incorporate the nonlinear constraint imposed by the Burgergpace Feynman path integfd?] as regards the kinetic term
equation we insert the identity pau/dt in F but that otherwisg andu do not appear in a

canonical combination. This situation can, however, be rem-

au edied by performing a simple complex shift of the noise
11 dué(ﬁ— vW2u—\uVu—-Vy|=1 (4.8 variablep,
Xt

V .
| 5 _ _ | p=1(iu-9), (5.1
in the partition functionZ(w); for a first order evolution

equation one can show that causality implies that the Jacq- . .
bian relatingdu to du/dt equals unity{82]. Finally, expo- In Egs. (4.9 and (4.10. The partition functionZ(x) can

nentiating the delta function constraint in E4.8) and av- then be written as
eraging over the noise distribution according to E3) we v v
obtain Z(M)zconstxf 1T dude exgi—S|exgi—Sg
Xt A A
Z(p,)=f 1T dudpexr{iG]exp{iJ dxdtuM}, (4.9 ><epo dxdtw}, (5.2
Xt
where the surface contributid®s has the form

Sg= f dxdt[%

X

where the effective functiond is given by i

> +V

u’—ue

ot

du i
G=fdxdt[p(——vV2u—}\uVu +§A(Vp)2} (4.10

_ A Y
v(go—lu)Vu+§gou2—|—u3 ] (5.3

3

The path or functional integrg#.9) with G given by Eq.  However, assuming that the path integral operates in a space
(4.10 effectively replaces the stochastic Burgers equatiortime LT box, i.e.,|x|<L/2 and|t|<T/2, and imposing, for
(4.2). The path integral is deterministic and the noigés  example, vanishing boundary conditions foin both space
replaced by the different configurations or paths contributingand time the surface contributid®y to the action vanishes
to Z. In this sense is an effective partition function for the identically.
dynamical problem an an effective Hamiltonian, analo- The bulk contribution to the action is given by the canoni-
gous to the Hamiltonian in the partition functiod  cal form[86]
=2 exp(—H/T) in equilibrium statistical mechanics. We
also note that the transcription of the Burgers equation to a ¢
path integral leads to the appearance of an additional noise S:f dth[uE_H(u"P)
field p, arising from the exponentiation of the delta function
constraint in Eq(4.8) [65—70, and replacing the stochastic with the complex Hamiltonian density
noise in Eq.(4.1).

Since the path integral formulation provides a field theo-
retical framework allowing for functional and diagrammatic
techniques, Feynman rules, skeleton graphs, Ward identities,
etc., it is mostly used in order to generate perturbation exThe Hamiltonian density consists of two terms: A relax-
pansions in powers of the nonlinear couplingVu, forming  ational or irreversible harmonic component,
the basis for the dynamic renormalization group method—i(»/2)[(Vu)?+ (V¢)?], corresponding to the diffusive as-
[42-44,55,83-8F It is, however, worthwhile noting that pects of a growing interface, i.e., the linear damping, and a
such a field theoretic expansion has precisely the same strunenlinear reversible mode coupling componeat2)u?V ¢,
ture as the one produced by directly iterating the Burgersssociated with the drivk.
equation(4.1) in powers ofAuVu and averaging over the One feature of the transcription of the noisy Burgers
noise term by term according to E@t.4). equation to a canonical path integral form is that the effec-

Also, corroborating our remarks in Sec. Il, we notice fromtive Hamiltonian density5.5 driving the dynamics of the
the structure of the path integréd.9) and (4.10 that the system is in general complex. This particular aspect was also
noise strengtt\ appears as a singular parameter in the sensencountered in the treatment in 1l where the growth term in
thatA—0 gives rise to the singular delta function constraintthe spin chain Hamiltonian turned out to be complex; see
for the Burgers equation. This limit is, however, much morealso Ref[57]. We also notice that the doubling of variables,
transparent when we expre&sn a ‘“canonical form.” i.e., the replacement of the stochastic noisby an addi-

(5.9

v A
H=—|§[(Vu)2+(V<p)2]+ §U2V<p. (5.5
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tional noise fieldy in the path integral, was also encounteredand it follows that

in the treatment in Il in the canonical oscillator representa-

tion of the spin variables. P:f dxg
It is here instructive to compare the above path integral '

for the relaxational growth dynamics of the Burgers equation

with the usual phase space path integral formulation in quan- g=uVe, (5.19

tum mechanics or quantum field thedd2]. Here the parti-

tion function has the form

(5.19

whereg is the momentum density.
In order to elucidate the canonical structure of the path
i integral (5.2—(5.5 and the analogy with the usual phase
sz H dpdq ex;{%s} (5.6 space Feynman path integral we have generated a complex
xt Hamiltonian(5.5). Note, however, that by formally rotating
the noise field in phase spage-i ¢ the Hamiltonian and the

with the classical action action become purely imaginary, leading to a real path inte-

gral.
s:f dxd[{pa—q—’}—[(p,q) , (5.7 The symmetries discussed in the context of the quantum
at spin chain representation in Il are also easily recovered here.

Noting that is invariant under a constant shift of the noise

wherep and q are considered canonically conjugate vari- field, o— ¢+ ¢o, We infer that the integrated slope field

ables andH(p,q) the usual classical Hamiltonian density.
Comparing Egs(5.6) and(5.7) with Egs.(5.2—(5.4) itis

evident that the structures of the two path integral formula- M :f dxu,

tions are quite similar and we are led to identify the noise

strengthA/v with an “effective” Planck constant and the i.e., the total offset of the height fielth= fdxu, across the

Hamiltonian density{ as the generator of the dynamics. Theinterface, is a constant of motion,

classical limit thus corresponds to the weak noise lithit

—0 and in analogy with the quasiclassical or WKB approxi- {H.M}=0. (5.17

mation in quantum mechanicd,— 0, constitutes a singular

(5.19

limit in accordance with our previous remarks. The partitionThIS is consistent with the local conserva.non law f_oIIowmg
from the structure of the Burgers equation, but is here a

function Z with the actionS given by Egs.(5.2—(5.5) thus . ) i
constitutes the required generalization of the stationary digzonsequence of the structure of the path integral. The invari-

P : . ance under a shift ap is equivalent to the invariance of the
oC —_— -
tribution P(u) = exif — (v/A)/dx.F] n Eq. (1.11 to the time Burgers equation under a shift of the noigan the noise
dependent casf87]. By comparison we furthermore con- e . )
. S . term V#. Similarly, under a constant shift of the slope field
clude that the slope field and the noise fieldy, replacing . : .
. S . . u—u+uq, we have, introducing the momentum dengity
the Gaussian noise in E@4.1), are canonically conjugate

2 . .
momentum and coordinate variables satisfying the Poissoﬁtﬁ.Hﬁ‘uong()‘/Z)uovg’ or since the last term is a t_otal
bracket algebr&8g] erivative, H—H+\ugP, corresponding to an associated

Galilean transformation with velocity-\u,. For the inte-

{u(x),e(x’)}=8(x—x") (5.8  9rated noise field
and that the Hamiltonian or energy (b:f dxe (5.18
A
H:J dxH=J dx| —i g[(Vu)2+(V<p)2]+ EUZV(p:| we thus obtain the Poisson bracket algebra
(5.9 {H,®}=\P, (5.19

is the generator of time translations according to the equayhich together with
tions of motion

{H,M}={H,P}=0, (5.20
Ju
—c={H.u}, (5.10 {P,®d}={P,M}=0, (5.21
” and
— ={H.e} (5.19 {® M}=L, (5.22

Drawing on the mechanical analog the momentBimthe  defines the symmetry algebra. We note again that the non-
generator of translations in space, is also easily identifiedinear coupling strengti. enters the Poisson bracké.19

from the basic transformation properties, and thus is a structural constant of the symmetry group.
We finally wish to comment on the properties of the path
Vu={P,u}, (5.12  integral in Eqgs.(5.2—(5.5 under time reversal— —t. By

construction the path integral applies at late times compared
Ve={P,o}, (5.13  to any initial timet,, defining the initial value of the slope
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configurationug. This implies that the noise in the Burgers S(u)
equation has driven the system into a stationary time regime
and that the transients associated withhave died out. In
the linear case fok =0, we note by inspection that the path \/
integral is invariant under the combined operation —t o | N\

and ¢— — ¢, implying that the slope correlations are not i
only stationary but also invariant under time reversal. This is
in agreement with the analysis of the noisy EW equation in :
Sec. Il where we obtaineflu)(k,w) = Ak?/[ w®+ (vk?)?], Uo
implying that (uu)(x,t) depends ont|. This is consistent

. - - . o FIG. 6. Here we depict in graphic form the basic principle of an
with the description of an equilibrium interface and is just an We depict In graph Ic princlp

. f mi . ibili fasymptoti(: steepest descent or saddle point calculation. The leading
expression of microscopic reversibility. In the presence Olkcontribution to the integrdl(A) in Eqg. (6.1) arises from the saddle

the drlve forA#0 the .path integral is invariant under the point u, (in the figure a minimur and nearby fluctuationsu

combined transformation— —t, ¢——¢, and A——\ = Up—u (arbitrary unit3.

showing that the term\/2)u®V ¢ in the Hamiltonian(5.9)

gives rise to a proper growth direction thereby breaking timesjope fieldu and the canonically conjugate noise figldsu

reversal invariance, that is, we are dealing with a genuingnd s, with vanishing variations at the boundaries of the

nonequilibrium phenomenon. space time LT box, we readily infer, using E.9), the
classical equations of motidi86]

VI. FIELD EQUATIONS IN THE WEAK NOISE LIMIT:

au 6H
SADDLE POINT APPROXIMATION . —{H.u, 6.3
The basic structure of the path integal2)—(5.5) is il- ¢
lustrated by the simple one-dimensional integral o SH
E:‘l‘E:{H,(P}. (64)

exdiuu], (6.2

1
I(A)zf du exp{iKS(u)
Implementing the functional derivation or, equivalently, us-

where A is the small parametdthe noise strengjhIn the ing the Poisson bracket relatidB.8), we obtain

limit A— O the integrall(A) is approximated by a steepest U

descent calculation, which amounts to an expansio®(aj —=—ivV2p+AuVu, (6.5
about an extremurmug, S(u)~S(Ug)+3S"(Ug)(U—Ug)? at
and a subsequent calculation of a Gaussian integral. For
small A we then obtain de .
E:+|vV2u+)\uV<p. (6.6)

A
. _. 2—
exp[muo]exp{ 7 25" (Ug)

1

I(A):exi{' KS(UO) The above coupled field equatio&5) and(6.6) are a fun-
damental result of the present analysis. They providiea
terministic description of the noisy Burgers equation in the
asymptotic nonperturbative weak noise limit. The equations
have the same form as the ones derived in Il based on the
The leading contribution td(A) is given by expiS(up)/A]  quasiclassical limit of the quantum spin chain representation.
and is thus determined by the extremal value of the actionf-urthermore, the parameter identification is in accordance
This part, however, goes along with a multiplicative factor,with the “quantum representation” of the Fokker-Planck
[—27iAIS"(ug)]Y? arising from the Gaussian integral equation. As regards the considerations in Il this demon-
sampling the fluctuations about the stationary points; thistrates that the precise identification of the quasiclassical
term is the first in an asymptotic expansion in powers oflimit is in fact a weak noise limit in the exact path integral
A2 We notice that there is an essential singularity for representation of the Burgers equation.
=0, signaling the nonperturbative aspects of a steepest de- First of all we observe that the field equation for the slope
scent calculation; the result cannot be obtained as a pertufield u has the form of a conservation lawu/dt=—Vu,
bation expansion in powers df. The analysis of the path with currentj=—(\/2)u?+ivV¢e. The fluctuating compo-
integral now essentially follows the same procedure but isient in the current in the noisy Burgers equatiogn,
rendered much more difficult owing to the field theoretical =i (N /2)u?— vVu— 7, is thus replaced by the noise fiejd
phase space structure of the problem. In Fig. 6 we have dend admissible solutions must yield an imaginary noise field
picted the principle of a saddle point or steepest descent caik order to render a real current, corroborating our remarks in
culation ofl(A). the previous section. The field equation for the noise field is

In the weak noise limiA —0 the asymptotically leading parametrically coupled to the slope field and in the presence
contribution to the path integral thus arises from configura-of the coupling A driven by the momentum densityg
tions or paths ,¢) corresponding to an extremum or sta- =uV .
tionary point of the actiors. Invoking the variational condi- Secondly, we confirm that the field equations are invariant
tion §S=0 with respect to independent variations of theunder the Galilean transformatid¢h.8) and(1.9),

—2miA|Y2

X
S"(uo)

(6.2
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u(x,t)—u(x—Augt,t) —ug, (6.7 (a)

@(X,1)— @(X—NUugt,t) (6.8 i extromal path

]
:
Il
'
]

and under an arbitrary shift ip ] fluctuations

e(X,t)— @(X,t) = @g, (6.9 '_E,_%

in accordance with the general discussion of the symmetry
algebra and consistent with the symmetry properties of the
noiseless and noisy Burgers equations.

As mentioned in Sec. | the instanton approach to driven
turbulence in the Burgers equation is also based on a saddle (b) i
point approximation to the Martin-Siggia-Rose functional in u=ie
Eq. (4.10. In particular, applying the shift transformation
(5.1) to the saddle point equations in R¢f2], also dis-
cussed in Refd.75], and considering short range correlated
noise, one obtain the field equatioiss) and(6.6). Also, the u
expressions for the energy and momentum in E§$) and
(5.14 were discussed in Reffr2-75.

One final comment on the classical zero noise limit. We
maintain that in the asymptotic nonperturbative weak noise u=-ip
limit the coupled field equations provide the correct descrip-
tion of the leading behavior of the noisy Burgers equation. In - F|G. 7. In (a) we show the “classical” path corresponding to
order to obtain the noiseless Burgers equation discussed tfe stationary point of the actio8 in the weak noise limit and
Sec. Il we must confine the noise field strictly to the line nearby paths corresponding to fluctuations.(ln we show the
¢=iu in (u,p) phase space in which case both field equa-saddle point regions inu;¢) phase spacérbitrary units.
tions reduce to the noiseless Burgers equaf®i). Note,
however, that setting=—iu we obtain the noiseless Bur- A. Stationary states
gers equation withv replaced by— v supportinggrowing
linear modes and é&eft hand nonlinear soliton mode—the .
missing modes necessary in order to describe the corregf)nS
morphology in the noise-driven stationary regime. In other u=uy, (7.2)
words, we anticipate that the lines= =iu define regions
for the stationary steepest descent or saddle point solutions
of the field equations. The vicinity of these lines corresponds Y=o (7.2)
to the Gaussian fluctuations about the stationary points, that

is the linear diffusive modes. This picture will in fact be g yjyial saddle point solutions with vanishing energy, mo-
borne out when we turn to an analysis of the field equat'c’”Ewentum, and action. They form an infinitely degenerate set
in the next section. In Fig. 7 we have shown the extremal,q correspond to the zero-energy aligned ferromagnetic
paths, corresponding to the saddle point solutions and thgyin states discussed in paper Il. The degenerate stationary
nearby paths characterizing the fluctuations un¢) phase  gjope configurations are related by a Galilean transformation

We note that the constant slope-constant noise configura-

space. and we shall in general choose a state with vanishing slope
corresponding to a horizontal interface. As regards the noise
VIl. SOLITON AND DIEEUSIVE MODE SOLUTIONS field we are free to choose it equal to zero. In the phase space

OF THE FIELD EQUATIONS plot in Fig. 7 the background stationary state or the
“vacuum” thus corresponds to the originu{¢)=(0,0).
The field equation$6.5) and(6.6) for u and ¢ constitute

a set of nonlinear coupled partial differential equations. The
general solution is not known. Unlike the noiseless Burgers
equation, which can be solved by means of the nonlinear In the linear case fox =0 the HamiltoniarH is harmonic
Cole-Hopf transformation, similar substitutions do not seemin the fieldsu and ¢. The coupled field equations are linear,
to work for the field equations. Presently, it is not known
whether the field equations belong to the small class of non- ou

B. Linear diffusive modes

— 2
linear evolution equations, which can be integrated partly or gt —1vVoe, 7.3
completely by means of the inverse scattering method and
related techniques. We are therefore obliged to choose a
more pedestrian approach and search for special solutions to ‘9_‘P: +ivvay (7.4)

the equation$77,78,8Q. ot
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and describe the weak noise limit of the EW equation. Ex-iumber, or thep? soliton [77,89, which connects the two
panding about the stationary staig (¢g) =(0,0) the equa- degenerate ground states defined by the double-well poten-
tions readily admit the solutions tial, the Burgers soliton has an arbitrary amplityde| cor-
responding to the infinitely degenerate stationary states. Fur-
_ (F) pa—i 02t +ikx_y (=) atiolt—ikx thermore, we note the interesting fact that unlike the case of
u(xt)—}k: [u e T e L @9 the noiseless Burgers equation, where we only have a single
right hand soliton mode, corresponding o= + 1, the bro-
ken reflection or parity symmetry is restored in the noisy
case. The noise drives the interface into a stationary state and
in the process excites botfght andleft handsolitons. This

. .0, . _ .0, .
(P(Xt):|2 [U(k+)e_lwkt+lkx_UE( )e+'wkt_lkx], (7.6)
k

with the quadratic diffusive dispersion law mechanism in the nonlinear case is equivalent to the excita-
tion of both growing and decaying diffusive modes in the
w)=—ivk?. (7.7 EW case. This “doubling” of soliton solutions in the driven
case was also observed in REf3].
Sinceu is real we have {")* =u*), implying that ¢ is The static soliton is a special configuration connecting

purely imaginary as discussed above. We also note that thgtationary states with opposite slopes. However, since the
solution(7.5), unlike the solution of the noiseless EW equa- underlying field equations are invariant under the Galilean
tion, includes both growing and decaying solutions. As disssymmetry groug6.7) and(6.8) it is an easy task to construct
cussed earlier this feature is consistent with the time reversal propagating soliton solutions by means of a Galilean trans-
invariance in the stationary regime. formation. Similar to the discussion of the noiseless Burgers
equation we obtain, introducing the boundary valuesfor
C. Nonlinear soliton modes x—L/2, the soliton condition{3.5), i.e.,

In order to treat the nonlinear aspects of the field equa- 2
tions we employ the same method as in the analysis of the u,+u_=—— (7.12
noiseless Burgers equation and look for static solutions. Us- A
ing _the Galilean invariance propagating solutl_ons are the%nd the moving soliton solution
easily generated by a transformation to a moving frame ac-
companied by a shift ofi. The static casegu/dt= e/t
=0, corresponds to the actid®= — [dxdtH(u,¢) and the u(xt)=
solutions are given by the stationary points of the Hamil-
tonianH. Multiplying the static field equations bY¢ and A
Vu, respectively, we obtairV¢V2¢+VuV?u=0, or by Xtan?{4—|u+—u|(x—vt—xo) , (713
guadrature, imposing the boundary conditions of vanishing v
slope,Vu=V =0 for x— *L/2, the slope condition

u,+u_ uy—u_
+ s
2 2

connecting stationary states with slopes and u_; note

(Vo)2+(Vu)2=0. (7.8 that we have a_tbsorbed the parity indexn the sign ofu+_
—u_. The soliton has center of magg, propagates with

Solving the slope condition we obtain velocity v=—\(u,+u_)/2, has the width #/(\|u,
—u_), and amplituddu, —u_|. In the limit of vanishing
Ve=iuVu (7.9  dampingr— 0, the inviscid limit, or large driva, the soliton

becomes a shock wave, i.e., a discontinuity in the slope field;
parametrized by the parity indgx=*+1, which inserted in  for finite damping the shock wave front is smoothed by dis-
the static field equations yields sipation. For vanishing amplitude,, —u_—0, the soliton

merges continuously into the stationary state=u_ .

prV2u+AUVU=0. (7.10 Finally, integrating the slope conditiof7.8), which by

é'nspection also holds for the propagating soliton, and using
the invariance property6.9) in order to set the integration
constant equal to zero, we obtain

This equation has the same form as the static limit of th
noiseless Burgers equatid@B.1) with dampinguv, and we
obtain the static solutioi3.2) with v replaced byuv, i.e.,
*,

e=iuu, (7.149

] (7.1  Vielding the static and propagating soliton solutions for the
associated noise field and in accordance with the saddle point
regions in Fig. 7. In Fig. 8 we have depicted the static soli-
tons and the associated smoothed cusps in the height field.

MAU
u(x)=u, tanl‘{ 2; (X—Xg)

The solution(7.11) has the form of a static, localized, sym-
metric soliton or kink with amplitude [2 |, center of mass
X, width 2v/(\|u,|), approaching *u|u,| for x—
+L/2. In the limit of vanishing dampingy— 0, the soliton
becomes a sharp discontinuity or shock in the slope field. In addition to defining the path integral in a finite LT box,
The static soliton connects two degenerate stationary statege must also specify appropriate boundary conditions for the
with slopes* |u, |. However, unlike the sine-Gordon soliton slope and noise fields in accordance with the physical situa-
[77,89, which is characterized by a topological gquantumtion. For a growing interface it is convenient to assume a

D. Multisoliton solutions: Boundary conditions
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u  ‘right hand" soliton u ‘left hand' soliton Burgers equation where there is no underlying canonical
structure, the asymptotic weak noise soliton and diffusive
. . mode solutions are derived from a variational principle. Fur-
_Jxo XOL thermore, we can associate an effective action, energy, and
u- e momentum with a particular phase space configuration or
growth pattern.
The energy density is generally given by Eq5.5). In-

" " X\/J . " /\ serting the slope conditiofi.8) valid for the soliton solu-
TN WX\ tions, the harmonic part af cancels and the soliton solutions
X’O X j(o X exclusively contribute to the growth term, i.e.e

=(M2)u?V ¢, or in terms of the momentum density.15),
€= (N\/2)ug. Inserting the soliton constraift.9) the energy
density also takes the form

FIG. 8. In (a) and (b) we show the staticight and left hand
solitons and the smoothed static downward and upward cusps in the e=(N2)i pu?vu. (8.1
associated height fiel@arbitrary units.
We note that the energy density is localized to the position of

horizontal interface at the boundaries equivalent to a vanisH€ soliton whereu varies most rapidly. For the soliton en-
ing slope field. This corresponds to a vanishing deterministi€'9y We thus obtain by quadrature in terms of the boundary
component in the current in E¢4.2) at the boundaries and Va&Uesu.,

implies that the interface is only driven by the noise. How- N

ever, since the single soliton solution discussed above con- Eziﬂ_[ui_uﬁ]_ (8.2)
nects stationary states with different slopes corresponding to 6

a nonvanishing current, we must pair at least two solitons or
opposite parity in order to satisfy the boundary conditions
By inspection of the field equation.5) and(6.6) we note,
however, that a nonoverlapping two-soliton configuration P=ipi[u2—u?] 8.3
u®+u® connected by a segment of constant slope is an #zlHy 8- '
approximate solution to the field equations and therefore coryng finally from Eq.(5.4), using de/dt=—vV¢e for the
responds to an extremum of the action in the path integrakyggsted static soliton, the soliton action

The correction term is given bk (u®Vu®+u@vud)

whose contribution to the action we can ignore for non- S=—-T[Pv+E], (8.9
overlapping well-separated solitons. Furthermore, the argu-

ment can be generalized to a multisoliton configuration conWhich also follows from the Galilean invariance 8f[86].
nected by segments of constant slope. It is a well-known' he surface contribution in E¢5.3) in terms ofE andP has
feature of path integral instanton or solitons configurationghe form
that in order to obtain the correct asymptotic behavior one

must sum over a gas of nonoverlapping instantons or solitons

[89]. The situation is the same in the_ present somewhat MOr&nd the functionaG in Eqg. (4.10 in the original MSR form
complicated context. In order to satisfy the boundary cond|~Is

tions of vanishing slope and to collect all the leading contri-

butions in the asymptotic weak noise limit the structure of v

the path integral implies the formation of a dilute gas of G=KT(1—,u)[Pv+2E]. (8.6
nonoverlapping solitons. In Fig. 9 we have shown the case of

two nonoverlapping soliton solutions. We notice that the asymmetry betwegght and left hand
solitons is reflected irG. For theright hand soliton for u
VIIl. DYNAMICS OF SOLITONS: =1, present in the noiseless cageyanishes and the weight
PRINCIPLE OF LEAST ACTION in Z(x) in Eq. (4.9 is unity; theleft handsoliton excited by

It is a fundamental aspect of the canonical form of theh® Noise carries a nonvanishi@y _
The purely imaginary character Bf P, andSis a feature

path integral for the noisy Burgers equation that it supparts - Je @ i
principle of least actiori86]. Therefore, unlike the noiseless ©f our choice of convention in establishing the canonical
path integral in Eqs(5.2—(5.5). In order to exploit the for-

malism of analytical mechanics and the structure of the

n a similar manner the soliton momentum in EGs14 and
(5.15 is given by

Sg=—Tl(n—=2)Pv+(2un—3)E], (8.5

vt phase space Feynman path integral we have chosen the noise
J(‘” M field ¢ in such a manner that and ¢ appear as canonically
. = conjugate variables satisfying the usual Poisson bracket
X 2 (5.8). As discussed earlier this implies thahas to be purely
7O imaginary in the case of the weak noise saddle point solu-

tions. The complex character & and P is consistent with
FIG. 9. We show the overlap between two well-separated solithe relaxational and propagating aspects of the soliton modes
tons (arbitrary units. as also observed in the Fokker-Planck description in paper II.
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The main properties oE and P in the present dynamical tionary points in (1,¢) phase space correspond to solitons
context are that they serve as generators of translations #nd multisoliton configurations connected by segments of
time and space, respective[86]. The nonlinear energy- constant slope. In addition there will be superposed diffusive
momentum relationship is characteristic of nonlinear solitormodes. In the nonlinear case the soliton configurations deter-
solutions[64] and is different from the simplE-P relation- mine the dominant features of the growth morphology and
ship encountered in the Lorentz invariastt or sine-Gordon  will be considered here. The superposed diffusive modes will
equation 77]. We also note that the damping constamloes  be discussed in the next section.
not enter in the expressions ferand P, which only depend The weight of a particular soliton configuration in the
on the boundary valuas. and the drivex. In the weak noise path integral is given by the action that is an additive quan-
limit the dynamics of soliton solutions is thus entirely decou-tity for a dilute gas of solitons. The soliton configurations are
pled from the dynamics of the linear diffusive modes. assumed to be excited with respect to a stationary state of
Let us specifically consider a soliton configuration satis-vanishing slope, i.e., a horizontal interface, and are further-
fying the boundary condition of left vanishing slope, i.e., more determined by imposing periodic boundary conditions
u_=0 for x=—L/2. The soliton conditior{7.12 then im-  at x==*L/2; we remark that fixed boundary conditions are
plies the right boundary value, = —2v/\, relatingu, to  inconsistent with a soliton configuration moving across the
the propagation velocity. The soliton with positive parity, system. We also note that unlike the transient properties of
u, >0, propagates left with negative velocity, whereas thethe noiseless Burgers equation, which are described by a gas
soliton with opposite parityy, <0, propagates in the for- of right handsolitons connected by ramps, corresponding to
ward direction. FoilE andP we infer for both parities a transient height profile composed of smoothed cusps con-
nected by convex parabolic segments as shown in Fig. 5, the

4 |v|® stationary state of the noisy Burgers equation is characterized
E= §' N2 (8.7 by a gas of bothright and left hand solitons connected by
pieces of constant slope. The noise thus radically changes the
v growth morphology of the Burgers equation. The noise sto-
P=-2i 2 (8.8)  chastically modifies the transient regime by exciting solitons
of both parities, which thus describe the morphology of the
2 |v? s]opg fie'ld.in the stationary nonequi'libriur'n state. The sit'ua—
S= §iT)\T_ (8.9  tion is similar to the case of the noise-driven damped sine-

Gordon equatior90,91] where the noise also excites non-
linear soliton modes.

We now proceed to discuss the morphology of a growing
interface in terms of solitons in the slope fiald The basic
“building block” is the static solitonconfiguration given by
Eqg. (7.11). From Eqgs.(8.2—(8.4) it follows that this mode

N has vanishing momentuf=0, energyE=i(\/3)|u_|3, and
Ep=iA?|P|3’2, (8.10  actionS=—i(\/3)T|u.|3 independent of its parity. By in-
tegration the height profilh= fudx, is given by

The velocityv = —Au, /2 characterizes the kinematics of the
soliton and is related to the amplitude wherdasand P
determine the transformation properties. Eliminating the ve
locity we obtain the soliton dispersion law

where sgn(InP)=—sgnv. We note that the nonlinear local- 20 U AU

ized soliton excitation has gualitativelydifferent dispersion h(x)=— — n cosr{—+(x—x0)

law from the linear extended diffusive mode dispersion law A fug 2v

w=—ivk? They are both gapless modes but the exponents . .

are different. The consequences of this aspect on the spe?:- rresponding to a dovynward and an “pV.Vaf.d pointing cusp

trum and scaling properties will be investigated later WhenSmOOthed by the damping constantin the limit of vanish- .
ng v the cusps become sharp. We also note that the static

we consider the fluctuations in more detail, but we alread)} liton d t satisfy the bound diti f i
note here that the change in the exponent, which can b oliton does not satisfy the boundary conditions of vanishing

identified with the dynamic exponent is related to the dif- tShOpf In Fig. 8 we have depicted the slope and height field in
ferent universality classes for the EW and Burgers cases. eBwo fas?f]" tati liton in E67.1 btain singl
Since the energy and momentum densities are localized at oosting the static soliton in E7.11) we obtain asingle

the soliton positions it follows that they are additive quanti—('ﬁgolvé)ng s(;nltlﬁ‘onW|tr]1_l\é(e7lolc:|3}ylg|\t/ﬁn by tt.helsollton cc:cndltlolr)
ties for a multisoliton configuration and the general expres-"" and the profilet7.19. In the particular case of a soli-

sions (8.2), (8.3), and (8.4) allow us to evaluate the total ton sellztisfy7inlg tfgﬁ Ieflt bouff‘o:gfy conditian. =0, we obtain
energy, momentum, and action for an arbitrary configuratior{rom 9.(7.13 the slope fie
constructed from well-separated nonoverlapping solitons.

: 9.9

U, Muy|
u(xt)= - 1+tan 7 (X—vt—xXp) (9.2
IX. A GROWING INTERFACE v
AS A DILUTE SOLITON GAS and by integration the height profile
We are now in position to present a coherent picture of ) o, |
the morphology of a statistically driven growing interface. In _ Uy ev Uy AMug
the weak noise limitA—0O the principle of least action h(xt=%x+ N Jug] In cosh =4~ (x~vt=x)

which operates in the present context, implies that the sta- (9.3
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FIG. 10. In(a) and(b) we show right and left-moving solitons
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FIG. 11. In(a) and(b) we show two two-soliton configurations

with vanishing amplitude at=—L/2. The associated height pro- Moving with opposite velocities corresponding to the left and right
files correspond to the bottom and top part of a step, respectivelpropagation of a step in the height profirbitrary units.

(arbitrary units.
with propagation velocity

AU,
2

9.9

vV=—

The energy, momentum, and action are given by E89)

and (8.9). This mode corresponds to the bottom part of an

in h moving along the closed ring. At each revolution the
height field thus increases b¥h and we have a simple
growth situation. For well-separated solitons the energy, mo-
mentum, and action are additive and we obtain from Egs.
(8.2-(8.9

8 |vf®

ascending step or top part of a descending step in the height Estep=§l N (9.8
field propagating to the left or right, depending on the sign of

u, . The configurations are shown in Fig. 10.

In order to describe moving stepn the height profile we
pair two well-separated non-overlapping solitons with equal

amplitude and opposite parity. The soliton conditighl2

vv

Pstep:_‘“ N2 (9.9

then implies that they move in the same direction with the

same velocity. In this case the slope and height fields have

the form

Mu. |
4y

Mu. |
4y

tanh (Xx—vt—x4) | —tanh

u
u(xt)= %

: (9.9

X(x—vt—xz))

2v uy
N fuy

cosh\ |u|/4v)(x—vt—X;)
g cosh\|u|/4v)(Xx—vt—X;)

h(xt)= , (9.6

5 9.7

vV=—

4 _|of?®

SstengiTTZ_' (91@

It is also easily seen by inspection that for soliton configu-
ration with vanishing slope field at the boundaries the surface
contribution Sz in Eqg. (5.3 vanishes. In Fig. 11 we have
shown the configurations.

In a similar way we can construct a more faceted height
profile in terms of a gas of appropriately paired solitons in
the slope fieldu with the only requirement that) the soli-
tons are well separated so that they constitute saddle point
solutions andii) they satisfy periodic boundary conditions.
For example, gjrowing tip or thefilling in of an indentation
is described by the three-soliton configurationsgdwing

We have here assumeg<x, for the center of mass coor- plateauformed by two steps corresponds to a four-soliton
dinates. This configuration corresponds to two comovingconfiguration. We also notice that the two-soliton configura-

solitons moving with velocity = —Au_,/2 and is equivalent

tions corresponding to a moving step can be “renormalized”

to a moving step in the height profile. The height of the stepby the excitation of further two-soliton configurations corre-

Ah is given byAh=u, (x,—X4). Imposing periodic bound-

sponding to curvature of the step. In Fig. 12 we have de-

ary conditions for the slope field corresponding to a closedicted the above special configurations. In Fig. 13 we have
ring of lengthL, this two-soliton mode corresponds to a stepshown a general profile.
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u sional integral(6.1) and the saddle point resul6.2), it is
clear that the soliton solution corresponds to the stationary
R point u, and the associated soliton action$tu,). Conse-
quently, we have not included the Gaussian fluctuations
about the stationary point, yielding the multiplicative factor
in Eq. (6.2 of orderA*? and depending on the second order
h derivativeS"(ug) evaluated at the stationary point, but have

u

h

/\ \/ only taken into account the exponential contribution deter-
mined by the action. In the context of the path integral the

u

X X Gaussian fluctuations about the stationary soliton correspond
to the linear diffusive mode spectrum in the presence of the
soliton configurations and remains to be discussed.

" In order to proceed in the analysis of the path integral
representation of the noisy Burgers equation we shall take a

ﬂ heuristic point of view and extract some information and

~———x X physical insight by making use of the Feynman path integral

structure oZ in Eqs.(5.2—(5.5), deferring an analysis of the

path integralper seto another context. The idea is to in a

certain sense “deconstruct” the path integral and determine

the form of the underlying “quantum field theory” leading

to Z by the usual Feynman methpd2]. Since the slope field

« u and the noise field in the path integral form a canonically

conjugate pair with Poisson brackét8), whereu plays the

role of a canonical “momentum” ang a canonically con-

jugate “coordinate,” the first step is to introduce the “quan-

FIG. 12. We show the soliton configuration correspondin@alo  tum fields” & and ¢, satisfying the canonical commutator
the growth of a tip,(b) the filling in of an indentation(c) the

X

growth of a plateau, an@) the “renormalization” of a stegarbi- . - A ,
trary units. [G(x), e(X )]:—|;5(X—X ) (10.1
X. “QUANTUM DESCRIPTION” OF A GROWING Here the ratio of the noise to the dampidgy, plays the role
INTERFACE: FLUCTUATIONS of an effective Planck constant just as in the path integral.

We thus have an effective “correspondence principle” op-

In the previous section we demonstrated that the dominant,ating relating the “classical” Poisson brackeé,B} to the
morphology of a growing interface governed by the noisy,, uantum” commutator[A,B], according to the prescrip-
Burgers equation in the weak noise limit can be described ind T 9 b P

terms of a dilute gas of propagating solitons. In the pation [A,B]=—i(A/»){AB}. In a similar way the effective
integral the soliton contributions correspond to the stationaryquantum Hamiltonian”H is inferred from Eq(5.9) [92],
saddle points in theu,¢) phase space determined by the

. . . . . . _ " ) " )\ "
principle of least action. By inspection of the one dimen H:J' —ii[(V0)2+(V<P)2]+§ 02V o |dx. (10.2

Whereas by construction the fieltisind¢ are Hermitian,
the HamiltonianH is in general a non-Hermitian operator.

= A ExpressingH in the form Hy+H,, it is composed of an
\;Lf’_j' X anti-Hermitian harmonic componeft,, governing the dy-

namics of the linear diffusive modes, and a nonlinear Her-
mitian componenﬂl, describing the growth characterized

by . In the Heisenberg picturkl is the generator of time
translations and we obtain the usual Heisenberg equations of

h motion[93]
a v .
E—IK[H,U], (10.3
&(,AD VA
EZIK[H,QD], (104)

X

FIG. 13. The general growth of an interface in terms of a diluteyielding “quantum field equations” of the same form as the
gas of solitongarbitrary units. “classical” field equationg6.5 and(6.6) [94],
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a0 o o yielding the unperturbed Hamiltonian and associated diffu-
5= ViV, (10.5  sive dispersion law
99 Fo=> éwoa*a (10.13
E:vazoﬂava. (10.6 07 4y Pk :
R 0_ i 12
In a similar way, the momentum operat®y the generator of @k k=, (10.19
translation, is given by Noting that the particle vacuum stal@ corresponds to a
stationary state with average vanishing slépgi|0), i.e., a
ﬁ’zf dxuv o, (10.9  horizontal interface, it is an easy task to evaluate the slope

correlation function. Since the path integral defines a Bose
time ordering[42] and using the time evolution operator, we
have the identification

[P,a], (10.9 (u(x,t)u(0,0)) = (0| Tt(x,1)0(0,0)|0)
=(0[a(x)e”Hol*")g(0)[0).
vzp=i§[ﬁ>,¢]. (10.9 (10.15

giving rise to the commutator relations

Vi=i

D> <

) . . Using thata, evolves in time according to
Finally, the symmetry algebra in Sec. V also holds in the

“quantum case” by simply replacing the Poisson brackets ] 0
by commutators according to the above “correspondence a)=ay0)exg —i—ayt (10.16
principle.”

The “quantum field equations(10.5 and(10.6 together  we then obtain in Fourier space
with the appropriate states of the Hamiltonigh0.2) are

completely equivalent to the path integral and thus provide A [(O]aeaf|0) (0|acaf|0)
an alternative description of the noisy Burgers equation. The (U(k.@)u(=k,—w))=i>}—-5— —+——5

= : : , K k
noise-induced fluctuations in the slope field, represented by (10.17)

the different configurations or paths in the path integral
weighted by the “classical”’ actionS, are replaced by or in reduced form in complete agreement with E2}8),
“quantum fluctuations” in the underlying “quantum field
theory,” resulting from the operator structure and the asso- Ak
ciated commutator algebra. We also note that the “quantum (uk@)u(=k ~0)= w’—(w)?
description” presented here is precisely the same as the one
obtained in paper Il based on the mapping of a solid-on-solid This simple calculation demonstrates how the “quantum
model to a continuum spin chain model in the quasiclassicdluctuations” as expressed by the commutator algebra and
limit. the effective Planck constam/v combine to produce the
factor A in the correlation function, which “classically” in

A. The Edwards-Wilkinson equation terms of the EW Langevin equation originates from averag-

,.ing over the nois&/ 7.

2
(10.18

In order to demonstrate how the ‘“quantum scheme
works it is instructive to evaluate the slope correlation func-
tion (uu)(kw) in Eq. (2.8) for the Edwards-Wilkinson equa-
tion. The dynamics of the EW case is governed by the un- In the nonlinear case the “quantum dynamics” is gov-
perturbed part ofi in Eq. (10.2 erned byA=Hy+H, in Eq. (10.2. Introducing the Bose

field ¢ in configuration space,
HOZJ

Introducing the usual “second quantization” schef@g] in
terms of Bose annihilation and creation operatmrsand al the Hamiltonian takes the form
satisfying the commutator algeb[ak,aﬂ:]= Sk » We have

B. The “quantum soliton”

—ig[(VO)Z—F(V?p)Z] dx.  (10.10

lf//(x)z(l/ﬁ)Ek‘, ay, explikx) (10.19

for the slope and noise fields I:|=(—i)(Alv)f dx|prT|2—)\(A/2v)3’2
0=—i e*a,—e ™ al], (101 o - a
0=-i\7,[ 2 [ (1013 xf AX(F = D2V I+ ) (10.20
- i _ describing the many-body interaction between the linear dif-
= e'**a, +e **a], 10.1 "
? 2vL Ek [ K a (1012 fusive modes governed by the first teky.
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Imposing the constraint of a horizontal interface we ob- o difiusive branch
tain (0)o<(g— ") =0, which implies that )= (#"). Since
the interaction termH; does not conserve the number of
particles, this constraint can only be satisfied for nonvanish-

ing () if the diffusive modes condense intacaherent con- K

densateso that(#)=(#")#0. The resulting macroscopic

wave function or condensate corresponds to the “classical”
soliton mode discussed in the previous sections. The situa-
tion is quite similar to the phenomenological theory for su- 22
perfluid helium based on a condensate wave function. The 93P 1y

condensate has two componentg) and (') or (0)=u
and (@)= ¢, and satisfies the coupled field equatiqfsH)
and (6.6), obtained from the “quantum field equations”
(10.5 and (10.6 by ignoring “quantum fluctuations” and
replacing the terms\0V{ and\GV @, by their average val- FIG. 14. We depict the quadratic diffusive dispersion law with
ues,\uVu and\uVe. We can thus regard Eqé5.5) and gap\2u? /4y and the gapless soliton dispersion law with fractional
(6.6) as two coupled Gross-Pitaevsky-type equations for th&xponent 3/Zarbitrary unitg.

condensate wave function or soliton md@s].

The “classical” soliton is localized in space and carries This shows that the quasiparticle wave packet propagates
energy and momentum, depending on the boundary condwith the same velocity as the “classical” soliton in complete
tions according to the expressiof®&2) and(8.3). Subjectto accordance with “the correspondence principle.” Whereas
“quantization” this mode becomes hona fide"quantum  the propagation velocity determines the kinetics of the
mechanical’ quasiparticle with the same energy and mo-'classical” soliton, the energy and momentum are the fun-
mentum. Notice, however, that the “quantum soliton” is de- damental characteristics in the “quantum” case; the velocity
localized owing to the “uncertainty principle,” which im- v becomes the group velocity of the wave packet. We also
plies thatAx,AP~A/v; hereAx, is the uncertainty in the notice from the wave packet form in E¢L0.24 that the
center of mass position for the soliton add® the uncer- “quantum soliton” corresponds to a propagating mode. Fi-
tainty in its momentum. For a “quantum soliton” with well- nally, eliminating the velocity from Eq$10.21) and(10.22
defined momentur® and energyE we can in the usual way We derive the “quantum soliton” dispersion law
associate a wave numbirand a frequenc¥), according to
the “de Broglie” relations,P=(A/v)K and E=(A/v)Q, , vz
and describe the quasiparticle by means of the wave function Qg=ir 3 (;) K™%, (10.26
Yoeexd —iQt+iKx]. Considering in particular a pair of
“quantum solitons,” describing a propagating step in the
height profile with energy and momentum given by Egs.
(9.8) and(9.9), we obtain

soliton branch

/.
32

-k

where sgn(InK)=—sgnv.

C. “Quantum fluctuations”

Q =i<1) § v]? (10.21) The final issue to consider in the qualitative “quantiza-
sep” T\ A 3 A2 ' tion” of the soliton system is the role of “quantum fluctua-
tions” in the presence of a “quantum soliton.” This problem
v\ vl is treated here by expanding the fielleind @ about a soli-
Kstep:_|<K)4v- (10.22  ton or condensate configuratiomiy,¢y). Inserting &= uj
+ 60 and o= ¢+ 8¢ in Egs.(10.5 and(10.6 we obtain to
and the wave function takes the form linear order two coupled equations for the “quantum fluc-
tuations” 60 and 6o,
Wocexd —iQt+iKx]=exd const< (Xx—vpt)], (10.23 950
——=—ivV28p+\ugVSu+A(Vug) 6p, (10.27
corresponding to a propagation with phase veloaity, ot
=(2/3)v. Noting, however, that the appropriate wave func-
tion for a localized soliton is the wave packet construction, 96p _ ) . .
—r =i vV280-+NupVEp+N (Vo) d0. (10.29
\Iproc; A exf —iQt+iKx] (10.24

These equations have the same form as the ones obtained by

) - ~expanding in the Gaussian fluctuations about the stationary
obtained from a superposition of plane waves, we obtain thggjiton solution in the path integral.

group velocity The equations of motiof10.27 and(10.28 describe the
interaction of the linear “quantum diffusive modes”
_dQ dQ/dv 10.2 (60,8%) with the soliton configurationuy,¢,) and consti-
YoTUK T dK/dv  © (1025 {e'a generalization to the noisy case of the linear stability
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equation in the analysis in paper I; the soliton again acts like o= —iv(k?+ kg). (10.39
a potential giving rise to phase shift effects and a gap in the
diffusive spectrum. Ay S ;

As in the noiseless case, Eq40.27 and (10.28 admit ExpandingsX and 4Y on a set of eigenstatek,,
an analytical solution. Since the equations are Galilean in-
variant we need only consider the case of a static soliton. SX=2, a,¥,, (10.40
First noting that the soliton solution according to E.9) is n
confined to the diagonal line¥ ¢y=iuVuy, w==x1, in
phase space, the fluctuatio@$, ¢ are disentangled by o n
transforming to “normal coordinates” along and perpen- 5Y_§ by ¥n (10.43
dicular to the “soliton lines.” Thug1) introducing “normal
coordinates” 6X=80+i6p, 8Y=560—i18p, (2) inserting  we finally obtain equations of motion for the expansion co-
the static solution (7.1, up=pulu,|tanhkyx), Vu, efficientsa, andb,,
= p|u,|ks cosh ?(kx), Veo=uVug, and (3) performing

the scaling transformationsX—hsX, 8Y—h~18X, where da, _ . -
h=cosh(k), in order to absorb the linear terms ¥y i.e., gi = Tlendnt (p—1)vksby, (10.42
SX=h"Y(s0+i6p), (10.29 b
. d—”: —iwaby+ (u+1)vka,, (10.43
sY=h(s0-i15), (10.30 t
h=cosh(kx) (10.3) which we proceed to discuss.
S 1 .
Aus | 1. The translation modes
N
ks= 20 (10.32 The zero-frequency mode of the Sctilmger operatoD

in Eq. (10.35 is associated with the translation and boosting
we arrive at the effectively decoupled equations for theof the static soliton profileuy,¢). This is seen in the fol-

“normal coordinates” lowing way. Since the “quantum field equation$10.5 and
(10.6 have the same form as the “classical” field equations
96X . ) o (6.5 and(6.6) they are equally satisfied by a soliton solution.
i = TDOXH (k= 1)rksdY, (10.33  Consequently, a variation of the static soliton profile,

(8ug,8¢g), is a solution of the linearized equatio(i.27
- and (10.28 or (10.33 and(10.39 in the static case, corre-
@: — DX+ (u+1)vk2sY. (10.34 sponding to the bound stati,=0. Furthermore, since the
at soliton depends parametrically on the center of mass position
L Xg it follows that the fluctuationsdug, S¢) are proportional
Here the Schmdinger operatoD has the same form as the g the derivatives Yu,,Ve,) with respect tox,, corre-
stability'matrix for the noi§eless Burgers equation in paper kponding to a displacement of the soliton position. This
or the sine Gordon equatidi@7,80Q, mode is thus a translation or Goldstone mode associated with
the broken translational symmetry and is a well-known fea-
(10.35 ture of symmetry breaking “excitations”; a Goldstone mode
is excited in order to restore the broken symmd8g]. A
similar translation mode was also encountered in our discus-
The wave numbek5=)\|u+|/2v introduced in Sec. Il de- sion of the noiseless case in paper |.
pending on the soliton amplitude sets the inverse length Focusing, for example, on thight handstatic soliton for
scale. We also note that Eq4.0.33 and (10.39 reduce to w=+1 and solving Egs(10.42 and (10.43 for n=0 we

D=—vV2+ vk?

1= cosﬁ(ksx)}'

the linear case fox=0 sinceD— —»V? andh—1. have the expansion coefficients
Since the Bargman potential cog(kx) admits an exact
solution the spectrum dd defined by the eigenvalue equa- a,= const (10.44

tion DV ,=iw,¥, is well known[97] and is discussed in
paper I. It is composed of a zero-eigenvalue localized bound

state mode and a band of phase shifted scattering modes, 60:68+2”k§éot’ (10.45
1 whereb] is the initial value fort=0, and we obtain, using
Woe coshkex)’ (10.39 that Vug<cosh %(k), the fluctuation mode
wo=0, (10.37 s0=ay+ (b3+ark?t)Vug. (10.46
k+iks tanh(ksX) For a,=0 this mode corresponds to an infinitesimal transla-

P ocexp(ikx - , 10.3 N
= xXpLik) k—iks (1039 tion &xo=DbJ of the soliton, i.e., a change of the center of
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mass coordinate; fax,# 0 the mode is equivalent to a boost nonlinear growth term in the Burgers equation or, equiva-
of the soliton to a small velocity vks. A similar discussion lently, the nonlinear Hermitian part of the Hamiltonian. For a
applies t05. pair of solitons representing a growing step the dispersion

law is given by Eq.(10.26, i.e.,
2. The diffusive scattering modes

The band of diffusive scattering modes is also easily dis- N 112
cussed. From the equations of motion for the expansion co- Q=i= (_> |K|372. (10.5))
efficients in Eqs(10.42 and(10.43 and again considering a 3w
right hand static soliton foru=1 we obtain forn=k the
solution

The mode is gapless and characterized by the fractional ex-
a,=ade' (10.47  ponent 3/2. The soliton mode accounts for the growth as-
pects of the driven interface. Fer—o the linear damping
_ dominates the growth an@,—0, also forA—0 we attain
]e'“’kt. (10.48  the linear EW case anflx—0; finally for A—0 the sto-
chastic aspects are quenched, solit@rsd diffusive modés
are not kinetically or stochastically excited, afigi— 0.

In the linear EW case the fluctuating interface is in equi-
librium and here described as a noninteracting gas of linear
R R gapless diffusive modes. The statistical fluctuations appear
80=, [a, coshkex)+by cosh L(kgx)]¥,,  (10.49  as “quantum fluctuations” of the quasiparticle modes. Since

k the dispersion is quadratic we can also envisage the EW case

wherew, is given by Eq.(10.38. We note thatsd in the as a “quantum” gas of free particles with imaginary mass.

soliton case again is composed of both positive and negative In the nonlinear Bu_rgers case_the_ quantum Som?”
emerges as a new additional quasiparticle, corresponding to

the faceted genuine growth of an interface. The linear modes
Yecome subdominant in the sense that they develop a gap in
the spectrum and correspond to superposed damped “ripple
modes” on the soliton configurations. The diffusive modes
xtend over the whole configuration and are phase shifted

ue to reflectionless scattering against the solitons as in the

thff soliton 4 on thel d|ffL:jsn|/e. modes ap;?trt rl:rom phase Sh'&oiseless case. A scattering analysis also, in accordance with
effects and spatial modulations s to lift the spectrum anq g\;inson’s theorem, shows the diffusive spectrum is de-

2_y2 2 H H
create a gapks=A\"|u.|”/4v, depending on the soliton am- pjeted by a number of states, corresponding to the translation

2
S

k2+ k2

2
S

K2+ k2

_ A0
bk—ak

i w)t RO 0
e“’k +[bk_a.k

Herea? and by are the initial values and the spectrum
given by Eq.(10.39. For the fluctuationsd we then have

driven regime, exhibiting a gapkg in the spectrum. In the
linear EW caseks=0 and 60 assumes the form in Eq.
(10.11. We shall not dwell here on the somewhat compli-
catedx dependence but only observe that the main effect o

plitude u, , the coupling\, and the frequency. modes of the solitons.
o o Before turning to the heuristic scaling analysis in the next
D. Many-body description of a growing interface section, we wish to add a few more remarks concerning the

The above analysis of the “quantum solitons” and the Structure of a field theoretic or many-body description of the
“quantum diffusive modes” allows a heuristic qualitative N0iSy Burgers equation. There are basically two equivalent
discussion of a growing interface. The stochastic dynamicg§0des of approackl) A direct evaluation of the path inte-
of the noisy Burgers equatiofd.1) in the stationary regime dral in the weak noise limit in a saddle point approximation
can be rigorously interpreted in terms of a dilute Landau-for a dilute soliton gas, including the diffusive modes, cor-
type “quantum” quasiparticle gas composed of eIementar;feSpond'”Q to Gaussian fluctuations about the saddle points,
excitations of two types: “Quantum solitons” and “quantum and summing over periodic orbits in order to include secular
diffusive modes.” The “quantum mechanics” being equiva- effects or(2) a construction of the equivalent “quantum
lent to a Master equation descriptifh6,57 is basically re- Many-body theory” on the basis of the “quantum represen-
laxational, corresponding to a complex Hamiltonian. tation” of the _path integral. Including the s_ohton_modes as

The elementary excitations fall into two classes: linearSPace- and time-dependenbndensateconfigurations, as
diffusive modes and nonlinear soliton modés. The linear ~Mentioned in Sec. X B, the many-body approach is similar to
diffusive modes are associated with the damping term in thé&h€ microscopic theory of interacting bosds5,98,99 with
Burgers equation or, equivalently, the harmonic anti-2nomalous propagators, etc. There are, however, some no-
Hermitian part in the Hamiltonian. These modes account fof@ble differences. In the case of interacting bosons the uni-
the relaxational aspects of the interface and are characterizé@M condensate acts as a particle reservoir and changes the

by the dispersion law10.39, i.e. free boson dispersion law=p? to a linear acoustic phonon
branchw«p. In the present case, the condensate correspond-
w=—iv(k®+ kg) (10.50 ing to a soliton or gas of solitons is nonuniform and time

dependent, governed by the “classical” field equations. The
with a gapvkg. As in our discussion of the noiseless case infree diffusive modes with dispersionxp? develop a gap
| the gap can be associated with a nonvanishing current tadepending on the soliton amplitude or velocity, whereas the
wards the center of the soliton where the damping in ensoliton or condensate mode emerges as a new quasiparticle

hanced.(2) The nonlinear soliton modes are related to thewith dispersionwo p®?.
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XI. SCALING AND UNIVERSALITY CLASSES quasiparticles, and lumping the matrix elements in an effec-

In addition to providing a many-body description of a tive form factor,G(K)=<0|u|K)(K|u|0>, we arrive at the
.spectral representation

growing interface in terms of a Landau-type quantum quasi-

particle gas of propagating “quantum solitons” and damped dK

quantum diffusive modes,” the path integral formulation (u(x,t)u(0,0)>=f —G(K)exd —i(Qlt|—K|x)].

also offers as a by-product some insight into the scaling 2m

properties, i.e., the behavior of the interface in the limit of (11.6

large distances and long times. ) o ) o )
We shall here focus on the scaling properties of the slopd he time ordering in Eq(11.4 together with parity invari-

correlation function summarized in the dynamical scalinggn¢eX— —X, imply evenness in the dependencexoandt;

form (1.7), i.e., assuming=0 in the stationary regime, alsoG(K) must be even irK. _ _
The spectral form(11.6 is only schematic. For a multi-
(u(x,t)u(0,0) =|x| 2= V1(|t]/|x|?). (11.)  soliton diffusive mode intermediate eigenstaf&;},{k;}),

whereK; andk; denote the soliton and diffusive mode wave
The scaling issue is then to determine the roughness or wamumbers, respectively, with total wave numbiér=S;K;
dering exponent, the dynamic exponertt, and the scaling +X;k; and total frequencm:EiQKi+2jwkj, we have
function f(w). _ o strictly speaking the spectral form, say for 0,
In the EW case the scaling functidnis given by Eq.
(2.9, i.e., H
(u(x,t)u(0,0)>=f dK;dkiG({K;},{ki})
f(w)=(A/2v)(4mv) Yaw Y2 exd — 1/dow],  (11.2 T e
—i[(ZiK;+ =ik 30k +3 o)t
implying the exponents(z)=(1/2,2). In the Burgers case xe MET Rl 2ot (119
Galilean invariance together with the fixed point structure ) . ]
lead to the scaling lawl.10), i.e., {+z= 2, which together Since the solitons are transparent with respect to the dif-
with the stationary distribution (1.11), an effective fusive modes as discussed in Sec. X C, the opetfatonly
fluctuation-dissipation theorem, yields the exponentg)(  €Xcites a single modé& extending across the system, i.e.,
=(1/2,3/2). G({Ki}.{kj}) ~G({Ki},k), and assuming furthermore that
According to the path integral formulation in Secs. IV and G({Ki}.k) factorizes approximately in accordance with the
V, using Egs(4.7) and(5.2) the slope correlation function is dilute soliton gas picture G({K;},k) ~Gp(K)IT;Gg(K;),
given by summing over the solitons we obtain

<U(X,t)U(0,O)>=Z(O)7lf H dude fdeD(k)e—ikx—iwt
! (U(x,)u(0,0))~
Xexr{iis

. (118

_ —iKx—=i(
5 S|uxu(00), (11.3 1 deGs(K)e ot

or in terms of the underlying “quantum field theory,” noting The expressiofil1.8 is clearly not correct in detail since we

that the path integral by construction defines time-ordere@a\/e _not solved th_e many-body_problem but only made some
products[42], plausible assumptions concerning the form facorNever-

theless, from the point of view of discussing the scaling
(u(x,t)u(0,0))=(0|TU(x,t)0(0,0)|0). (11.4  properties Eq(11.8 has the required structure and serves
our purpose. In the EW cas€g(K)=0 and Eg.(11.8
Here |0) denotes the appropriate stationary state for the syseduces to the scaling form(11.2. In the Burgers
tem. case Qxi|K|*2 ie., expEiQt)=exp(+constx|K[¥?%),
In order to elucidate the structure of EG.1.4 we con- and the denominator [1—[dKGg(K)e Kx~it]~1
struct a spectral representation tiy displacing the slope ~JdKGg(K)e *~'t controls the scaling behavior. In
field Q(x,t) to the origin in space and time by means of theboth cases we can use the simplified general spectral form

HamiltonianH and the momentuni, using the integrated (11.6. . . . .
form of the commutator relationd0.3 and (10.8), and (ii) For the purpose of a discussion of the scaling properties
inserting intermediate eigensta{& with momenturP and we f|r§j consider a general quasi-particle dispersion law with
energyEp . The first step implies the relation a gapA, stiffness constam, and exponeng,

a(x,t):exp[i%(ﬁxmt)

o(o,O)exp[—i %(ﬁx+ Ht)};
(11.5  For large distancekx|>a, wherea is a microscopic length
. defining the UV cutoffK~1/a implied in Eq. (11.6, the
secondly, inserting intermediate states, ustti@®)=Ep|P)  spectral representation samples the small wave number re-
andP|P)=P|P), introducing the frequency and wave num- gions K<1/a. Assuming that the form factor is regular for
ber (Q,K) associated with the elementary excitations orsmall K, i.e., G(K)~G(0)+ (1/2)K?G"(0), andrescaling

Q=A+A|K|~. (11.9
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K, Kx—K, we obtain, inserting the general dispersion dK . aklwek
(11.9, the spectral representation in a more appropriate scal- f(W):G(O)j 7€ HAIK[wK), (1113
ing form

The above expression is at best heuristic but we do notice
_ dK . that it has the correct limiting behavior, i.€(w) ~ const for
<u(x,t)u(o,0)>~G(O)e—'mx—lf —— g TAIKIAI/IXP =ik w—0 andf(w)~w~ 2 for w— .
2m The scaling functiorf (w) describing the behavior of the
(11.10 strong coupling fixed point has been accessed both numeri-
cally [51-53 and by means of an analytical mode coupling
We emphasize again that the spectral representatiodpproact{54,55, based on a self-consistent one-loop calcu-
(11.10 can only be considered as a heuristic expressiofation, i.e., to first order in, and ignoring vertex corrections;
since we have not here carried out a detailed analysis of th&e note that it has been shown in RE35] that the vertex
non-Hermitian non-Lagrangian field theory underlying thecorrections up to second loop order are nonsingulad in
path integral. Nevertheless, we believe that we can already 1 and numerically small. The agreement between the nu-
draw some interesting general consequences concerning theerical simulations and the analytical method is good, indi-
scaling properties of a growing interface. cating that the mode coupling approach seems to capture
First we observe that in the presence of a §ap0 there _essential properties of the strong coupling fixed point behav-
is no scaling behavior. For the diffusive mode in the pres/©':

ence of a soliton the spectrum is, for example, given by Eq, The heuristic and preliminary character of the scaling
. ~ .o . . function given here does not allow a detailed comparison.
(10.50 with a gapA = —ivkS, implying an exponential fall-

o  We note, however, that sinakx\(A/v)Y? in the Burgers-
off with t in Eq. (11.19. Consequently, only gapless excita- KPZ case the dimensionless argument in the scaling function

tions for A=0 contribute to the scaling behavior. The gap-f(w) is N[(A/v)Y2%/x%2]. This is in complete agreement
less excitations are associated with the so-called zerqgith the driven lattice gas DRG analysis[ih7] and with the
temperature fixed point behavior of the “quantum field general arguments advanced in the mode coupling analysis
theory” and determine the scaling properties. in [54,55.

__ Furthermore, comparing the spectral forhl.10 for We also note the curious fact that the spectral fotn.6)
A=0 with the scaling form(11.1) we immediately identify for a gapless dispersion with exponghbears resemblance
the roughness exponetit 1/2 and the dynamic exponent to the form of the probability distribution for a one-

= 3. We also note that whereas the expongntl/2 essen- dimensional Ley flight with index w=8 [100]. The case
tially follows from a simpleregularity propertyof the form  u= =2 corresponds to ordinary Brownian walk, whereas
factor G(K) with leading termG(0) for smallK, the expo- u=8=3/2<2 is equivalent to super diffusion.

nentz is tied to the exponerg in the quasiparticle dispersion The present analysis of the scaling properties based on the

law. spectral form(11.6 originates from a weak noise saddle
In the linear EW case the diffusive gapless modes withpoint approximation to the path integral and as such only
dispersion law(10.14, i.e., w,=—ivk?, exhaust the spec- holds for A—0. However, within the general assumptions

trum and we obtairB=z=2, corresponding to the EW uni- underlying the application of scaling theory and the notion of
versality class in Table I. Also the spectral form yields theuniversality classes, we expect the exponents and scaling
scaling function(11.2) with the identificationG(0)=A/2v. function to be universal characteristics of the system and
In the nonlinear Burgers-KPZ case the soliton modes wittthusindependenof the noise strengtiA. This property can,
gapless dispersiorf10.53), i.e., Qxx(A/v)Y2\|K|®? ex-  however, be reconciled within the present many-body ap-
haust the bottom of the spectrum and yield the expogent proach if we assume that an enhancement of the noise
=z=3/2, corresponding to the Burgers-KPZ universality strength, that is a stronger drive of the system, only leads to
class in Table I; the linear diffusive modes develop a gapa dressingof the quasiparticle spectrum, i.e., a change in the
according to Eq(10.50, become subdominant, and do not stiffness constant, and not to a change in the expo@eht
contribute to the scaling behavior. the “guantum mechanical” language this corresponds to the
The above discussion thus providedymamical interpre- assumption that the WKB approximation also holds in the
tation of the scaling properties, exponents, and universalitystrong “quantum regime” as far as the exponent of the qua-
classes. The universality class is determined by the lowessiparticle dispersion law is concerned.
lying gapless excitation. The spectral form also elucidates We conclude this section with a few speculative remarks
the robustnessof the roughness exponeidt which is the concerning the “breakdown of hydrodynamics.” The noisy
same for both universality classes. In the case of the statiorBurgers equation is basically a nonlinear conserved hydro-
ary equal-time fluctuations we set 0 in Eg.(11.8 and the dynamical equation derived by combining the conservation
resulting scaling form yielding’ doesnot depend on the law du/dt+Vu=0 with a constitutive equation for the cur-
specific quasiparticle dispersion law; this argument isrent, j=—vVu—(\/2)u?— 7, with transport coefficients’
equivalent to the effective fluctuation-dissipation theorem(the dampingandX (the mode coupling The expression for
yielding the stationary distributiofiL.11) independenof the  the deterministic part of is thus based on a gradient expan-
nonlinear drive. sion to lowest order and the simplest quadratic nonlinearity
The spectral form{11.10 also provides an expression for in u. The issue is in which way the mode coupling term
the scaling functiorf(w). We obtain comparing Eq11.8 affects the hydrodynamical properties. In this context
with Eq. (11.0) “breakdown of hydrodynamics™ usually refers to the situa-
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tion where the underlying regularity structure of the gradient _ v Y
expansion, i.e., in wave number space regularity in an expan- H=~- E[(Vu)z— (Vo) + §U2V<P, (12.3
sion ink, breaks down.
In the present many-body formulation, entailing the spec-
tral form (11.6), in frequency space we obtain whereas in the equilibrium case we have the general form in
one dimension,

(uuy(k,w)~Re (11.12

w— Qk ’ 1
ZerCIH dpdqex;{—TH}, (12.9
In the linear EW case fon= —ivk? we recover the diffu- "
sive form (2.8), corresponding to a diffusive pole)E=
—ivk? in the complexw plane. However, in the nonlinear
mode coupling case for#0, Q,=|k|*? and(uu)(k,w) de- H:J dxH(p,q), (12,9
velops a branch cut structure, corresponding to a nonanalytic
wave number dependence in the current, i.e., a breakdown of
hydrodynamics. whereH is the Hamiltonian density. By comparison we note
that the noise strength plays the role of a “temperature” in
the dynamical case. We also observe thgf, for the dy-
namical 1D problem, treating time as an additional coordi-

In the present paper we have advanced an approach to th@te, i.e.t—y, is equivalent to a 2D equilibrium partition
growth morphology and scaling behavior of the noisy Bur-function with the Hamiltonian
gers equation in one dimension. Using the Martin-Siggia-
Rose(MSR) technique in a canonical form we have demon- ) N
strated that the physics of the strong coupling fixed point is H:f dxdy{uV o+ =[(V,u)2—(V,0)2]— =u?V, ¢
associated with an essential singularity in the noise strength T2 2
and can be accessed by appropriate theoretical soliton tech- (12.6
niques.

The canonical representation of the MSR functional inte-and temperaturd/v.
gral in terms of a Feynman phase space path integral with a |, 5qgition to providing a physical many-body picture of
complex Hamiltonian identifies the noise strength as the relg, morphology of a growing interface in terms of soliton
evant small nonperturbative parameter and allowsafprin- - Jqac accounting for the growth aspects and diffusive

ciple of least actionIn the asymptotic weak noise limit the ,54eq corresponding to the relaxational aspects, the present
leading contributions to the path integral are given by a diphrqach also gives insight into the scaling properties. The
lute gas of solitons with superposed linear diffusive modes

) - ) erspective here is not a “coarse graining” procedure, re-
The canonical variables are the local slope of the interfac

XIl. DISCUSSION AND CONCLUSION

. o s o lacing the original description by a scaling description with
and an associated “conjugate” noise field, characteristic 0 nsuing dynamical renormalization gro(PRG) equations,

the MSR formalism. In terms of the local slope the solitony, v rather a focus on the gapless elementary excitations or
and diffusive mode picture provide a many-body descr'pt'orhuasiparticles of the many-body theory.

of a growing interface governed by the noisy Burgers equa-" g case of simple scaling characterized by a roughness
tion. The noise-induced slope fluctuations are here repres,onent a dynamical exponent, and a scaling function, cor-
sented by the various paths or configurations contributing t‘?esponding to a simple fixed point structure in the DRG
the path integral. _ _ analysis, is here represented by a single quasiparticle mode
The canonical formulation of the path integral and theg,aysting the bottom of the spectrum with a gapless disper-
associated principle of least action also _allow us to associatg§on jaw. The dynamic exponent is given by the exponent in
energy, momentum, and action with a given soliton configuyne quasiparticle dispersion law, whereas the roughness ex-
ration or growth morphology. This gives riseaadynamical  ,hent follows from a regularity property of the form factor
selection criteriorsimilar to the role of the Boltzmann factor i, 5 spectral representation of the slope correlations, with the
exp(—E/T) in equilibrium statistical mechanics that associ- scaling function being given by the spectral form itself.
ates an _gnergE W@th a_given configu_ration contributing to Our analysis shows that the nonequilibrium growth dy-
the partition function; in the dynamical case the act®n amijcs in one dimension is controlled by solitons or dynamic
provides the weight function for the dynamical configura- 4omain wall. In this respect there is a parallel between the
tion. In more detail, in the dynamical case, by “rotating” the present kinetic growth problem and other well-studied low
noise variablee— —i¢, we obtain the partition function  gimensional equilibrium problems also controlled by local-
ized excitations such as the one-dimensional Ising model
Vo with domain wall excitations or the two-dimensionglY
Zayn™ J 1} dude EXF{ A S}* (12.0 model characterized by vortex excitatiof86]. The present
approach is conducted in one dimension and assumes a spa-
tially short range correlated conserved noise in order to
(12.2 implement the shift transformation leading to the canonical
' formulation and the separation of the Hamiltonian in a har

§—Jd dfus — 7
= X UE—H(U,QD)
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monic part and an interacting part. In higher dimensions the
Burgers equation becomes a vector equation with a nonlinear piscyssions with J. Krug, M. Kosterlitz, M. H. Jensen, T.

term N (G- V)u and we obtain a more complicated Hamil- Bohr, M. Howard, K. B. Lauritsen and A. Svane are grate-
fully acknowledged.

tonian governing the dynamics.
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