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Soliton approach to the noisy Burgers equation: Steepest descent method

Hans C. Fogedby
Institute of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus C, Denmark*

and NORDITA, Blegdamsvej 17, DK-2100, Copenhagen O” , Denmark
~Received 15 October 1997!

The noisy Burgers equation in one spatial dimension is analyzed by means of the Martin-Siggia-Rose
technique in functional form. In a canonical formulation the morphology and scaling behavior are accessed by
means of a principle of least action in the asymptotic nonperturbative weak noise limit. The ensuing coupled
saddle point field equations for the local slope and noise fields, replacing the noisy Burgers equation, are
solved yielding nonlinear localized soliton solutions and extended linear diffusive mode solutions, describing
the morphology of a growing interface. The canonical formalism and the principle of least action also associate
momentum, energy, and action with a soliton-diffusive mode configuration and thus provide a selection
criterion for the noise-induced fluctuations. In a ‘‘quantum mechanical’’ representation of the path integral the
noise fluctuations, corresponding to different paths in the path integral, are interpreted as ‘‘quantum fluctua-
tions’’ and the growth morphology represented by a Landau-type quasiparticle gas of ‘‘quantum solitons’’ with
gapless dispersionE}P3/2 and ‘‘quantum diffusive modes’’ with a gap in the spectrum. Finally, the scaling
properties are discussed from a heuristic point of view in terms of a ‘‘quantum spectral representation’’ for the
slope correlations. The dynamic exponentz53/2 is given by the gapless soliton dispersion law, whereas the
roughness exponentz51/2 follows from a regularity property of the form factor in the spectral representation.
A heuristic expression for the scaling function is given by a spectral representation and has a form similar to
the probability distribution for Le´vy flights with indexz. @S1063-651X~98!09604-4#

PACS number~s!: 05.40.1j, 05.60.1w, 75.10.Jm
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I. INTRODUCTION

This is the second of a series of papers where we ana
the Burgers equation in one spatial dimension with the p
pose of modeling the growth of an interface; for a brief a
count we refer to@1#. In the first paper, denoted in the fo
lowing by I @2#, we investigated thenoiselessBurgers
equation@3–6# in terms of its nonlinear soliton or shoc
wave excitations and linear diffusive modes. In the pres
paper we address our main objective, namely thenoisyBur-
gers equation in one spatial dimension@7#. This equation has
the form

]u

]t
5n¹2u1lu¹u1¹h, ~1.1!

wheren is a damping constant or viscosity andl a nonlinear
coupling strength. The equation is driven by a conser
white noise term,¹h, whereh has a Gaussian distributio
and is short-range correlated in space according to

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!. ~1.2!

In the context of modeling a growing interface the Kard
Parisi-Zhang equation~KPZ! @8# for the height fieldh,

]h

]t
5n¹2h1

l

2
~¹h!21h, ~1.3!

is equivalent to the Burgers equation by means of the r
tionships

*Permanent address.
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u5¹h, ~1.4!

h5E udx, ~1.5!

that is, the Burgers equation governs the dynamics of
local slope of the interface. In Fig. 1 we have sketched
growth morphology in terms of the height and slope field

The substantial conceptual problems encountered in n
equilibrium physics are in many ways embodied in t
Burgers-KPZ equations~1.1! and ~1.3!, which describe the
self-affine growth of an interface subject to annealed no
arising from fluctuations in the drive or in the environme
@9–15#. Interestingly, the Burgers-KPZ equations are a
encountered in a variety of other problems such as rando
stirred fluids@7#, dissipative transport in a driven lattice ga
@16–18#, the propagation of flame fronts@19–21#, the sine-
Gordon equation@22#, and magnetic flux lines in supercon
ductors@23#. Furthermore, by means of the Cole-Hopf tran
formation @24,25# the Burgers-KPZ equations are als
related to the problem of a directed polymer@26,27# or a
quantum particle in a random medium@28,29# and thus to the
theory of spin glasses@30–32#.

In contrast to the case of the noiseless Burgers equa
discussed in paper I where the slope field eventually rela
due to the dissipative termn¹2u, unless energy is supplie
to the system at the boundaries, the noisy Burgers equa
~1.1! describes an open nonlinear dissipative system dri
into a stationary state with random energy input at a sh
wavelength scale provided by the conserved noise¹h. In the
stationary regime the equation thus describes tim
independent stochastic self-affine roughened growth. In
4943 © 1998 The American Physical Society
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4944 57HANS C. FOGEDBY
linear case forl50 the Burgers equation reduces to t
noise-driven Edwards-Wilkinson equation~EW! @33#

]u

]t
5n¹2u1¹h; ~1.6!

here for the slope fieldu. Owing to the absence of the non
linear growth termlu¹u the cascade in wave number spa
is absent and the correlations, probability distributions, a
scaling properties are easy to derive@34#. Furthermore, since
the EW equation is compatible with a fluctuation-dissipat
theorem, it actually describes the dynamic fluctuations in
equilibrium state with temperatureD/2n ~in units such that
kB51! and as a consequence does not provide a prope
scription of a growing interface. On the other hand, the pr
ence of the nonlinear growth termlu¹u in Eq. ~1.1! renders
it much more complicated and much richer. The term filt
the input noise¹h and gives rise to interactions betwee
different wave number components leading to a cascade
changes both the scaling properties and the probability
tributions from the linear EW case.

The Burgers-KPZ equations owing to their simple for
accompanied by their very complex behavior have serve
paradigms in the theory of driven and disordered syste
and have been studied intensively@9–15#. One set of issues
that has have been addressed is the scaling properties@35–
38#. According to the dynamic scaling hypothesis@35,38#
supported by numerical simulations and the fixed point str
ture of a renormalization group scaling analysis,@7,8#, the
slope fieldu is statistically scale invariant in the sense th
the self-affine rescaledu8(x,t)5b2(z21)u(bx,bzt) is statis-
tically equivalent tou(x,t), whereb is a scale parameter
More precisely, the scaling hypothesis implies the followi
dynamical scaling form for the slope correlation function
the stationary regime@7,8,38–40#:

^u~x,t !u~x,8t8!&5ux2x8u2~z21! f ~ ut2t8u/ux2x8uz!.
~1.7!

The scaling behavior in the long wavelength–low frequen
limit is thus governed by two scaling dimensions:~i! the

FIG. 1. We depict the general growth morphology for a 1
interface in terms of the slope fieldu and the height fieldh ~arbi-
trary units!.
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roughness or wandering exponentz, characterizing the slope
correlations for a stationary profile and~ii ! the dynamic ex-
ponentz, describing the temporal scaling in the stationa
regime@41#. The slope fieldu has the scaling dimension 1
2z. For largew the scaling functionf (w)}w22(12z)/z; for
small w f(x)}const.

Two properties determine the scaling exponents, nam
a scaling law and an effective fluctuation-dissipation the
rem. Like the noiseless or deterministic Burgers equat
discussed in paper I, the noisy equation is also invariant
der a Galilean transformation@7,8#

x→x2lu0t, ~1.8!

u→u1u0 . ~1.9!

Since the nonlinear coupling strengthl here enters as a
structural constant of the Galilean symmetry group it tra
forms trivially under a scaling transformation and combin
with the existence of a nonvanishing fixed point for the
fective coupling strengthl2D/n3 we infer the scaling law
@7–10#

z1z52, ~1.10!

relating z and z. Furthermore, noting that the stationa
Fokker-Planck equation for the Burgers equation~1.1! is
solved by a Gaussian distribution@7,11,27#

P~u!}expF2
n

D E dxu2G , ~1.11!

independentof l it follows that u is an independent random
variable and that the height variableh according to Eq.~1.5!
performs random walk, corresponding to the roughness
ponentz51/2, also in the linear EW case. From the scali
law ~1.10! we subsequently obtain the dynamic exponenz
53/2. In the linear EW casez51/2 andz52, characteristic
of diffusion. In Table I we have summarized the expone
for the EW and Burgers-KPZ universality classes.

The standard tool used in the analysis of the scaling pr
erties of nonlinear Langevin equations of the type in E
~1.1!–~1.3! is the dynamic renormalization group~DRG!
method @35#. This approach is based on an expansion
powers of the nonlinear couplings and a subsequent term
term average over the noise, implementing the statistical
erage. Power counting or the degree of divergence of
perturbative corrections typically identifies a critical dime
sion separating regions where infrared convergent pertu
tion theory holds yielding mean field behavior from regio
with infrared divergent expansions. In the divergent regio
the expansion is regularized by~i! a momentum shell inte-
gration in the short wavelength limit, corresponding to
wave number version of the Kadanoff construction@35#, or
~ii ! more powerful field theoretical dimensional regulariz

TABLE I. Exponents and universality classes.

Universality class z z

EW 1/2 2
Burgers-KPZ 1/2 3/2
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57 4945SOLITON APPROACH TO THE NOISY BURGERS . . .
tion schemes@42#. The DRG thus allows for an organizatio
of the divergent terms and leads to renormalization gro
equations for the effective parameters in the theory, ofte
terms of an epsilon expansion about the critical dimens
yielding expressions for the critical exponents and inform
tion about the scaling functions.

For the Burgers-KPZ equations the scaling phenome
ogy is now well understood@7,8,43,44#. The expansion in
powers of the nonlinear coupling strengthl in conjunction
with a term by term noise average and an appropriate re
larization scheme, e.g., a momentum shell integration, yie
DRG equations for the scaling behavior in terms of an eff
tive coupling strengthg5l2D/n3. The lower critical dimen-
sion is dc52, also following from simple power counting
Below dc52 there appear three renormalization group fix
points: An infrared-unstable Gaussian fixed pointg* 50,
corresponding to vanishing coupling strength, describin
smooth interface governed by the EW equation, an infrar
stable strong coupling fixed pointg* Þ0, characterizing a
rough interface, and an infrared-unstable fixed point forg*
5`. The exponents assume nontrivial values for alllÞ0. In
d51 an effective fluctuation-dissipation theorem equival
to the Gaussian form in Eq.~1.11! is operative, and togethe
with the Galilean invariance, implying trivial scaling ofl,
the renormalization group equations yield the exponent
Table I associated with the infrared-stable nontrivial stro
coupling fixed point@7,8,43,44#. Abovedc52 the role of the
fixed points is reversed and we have an infrared stable v
ishing Gaussian fixed pointg* 50, corresponding to a
smooth interface described by the EW equation and a n
trivial infrared-unstable fixed pointg* Þ0, which can be de-
termined by an epsilon expansion aboutdc52 just as in the
case of the nonlinears model@42#. This DRG phenomenol-
ogy indicates the existence of a kinetic phase transition fr
a weak coupling smooth phase for smallg to a strong cou-
pling rough phase that does not seem accessible by analy
methods @43–45#; however, the scaling exponents in th
strong coupling phase has been determined numeric
@9,46# and by self-consistent mode coupling theory@47–49#.
The issue of an upper critical dimension has also been c
sidered and, for example, proposed to bed54 in Ref. @50#;
the issue, however, remains controversial and we refe
@50# for further referencing.

Although the scaling exponents associated with the str
coupling fixed point ind51 are exactly known, owing to
Galilean invariance and the fluctuation-dissipation theore
and confirmed to second loop order@43,44#, the scaling func-
tion does not follow from a simple DRG analysis. In fac
unlike the driven lattice gas, which can be analyzed by
epsilon expansion belowd52, this is not the case for th
Burgers-KPZ equations, which are related to the continu
limit of the lattice gas. On the other hand, the scaling fu
tion has been accessed numerically@51–53# and by means of
an analytical mode coupling approach@54,55#, based on a
self-consistent one-loop calculation, i.e., to first order inl.

In a recent letter, denoted in the following by II@56#, we
approached the strong coupling fixed point behavior from
point of view of the mapping of the Burgers equation onto
equivalent solid-on-solid or driven lattice gas model@11,57#,
which furthermore maps onto a discrete spin 1/2 chain mo
@58,59#. The quantum spin chain approach has been p
p
in
n,
-

l-

u-
s
-

d

a
d-

t

in
g

n-

n-

m

cal

lly

n-

to

g

,

n

m
-

e
n

el
o-

posed in@11,60#, and considered further in@62#, on the basis
of the equivalence between the Liouville operator in t
Master equation describing the evolution of the on
dimensional driven lattice gas, or the equivalent lattice int
face solid-on-solid growth model, and a non-Hermitian sp
1/2 Hamiltonian. The quantum chain model has been trea
by means of Bethe ansatz methods@11,60–63# and the dy-
namic exponentz53/2 obtained from the finite size mas
gap scaling. In II we pushed the analysis further and, c
structing a harmonic oscillator representation valid for lar
spin in combination with a continuum limit, we derived
Hamiltonian description and a set of coupled field equatio
of motion for the spin field, corresponding to the slopeu,
and a conjugate ‘‘azimuthal’’ angle field replacing the nois
The field equations admit spin wave solutions, correspond
to the linear diffusive modes and, more importantly, nonl
ear localized soliton solutions, describing the growing ste
in the original KPZ equation or the solitons or shocks in t
Burgers equation. We also derived the soliton dispersion
and after a quasiclassical quantization identified in a heu
tic manner the elementary excitations of the theory. From
dispersion law we deduced the dynamic exponentz53/2,
characteristic of the zero temperature fixed point of
‘‘quantum theory.’’ The picture that emerged from ou
analysis was that of a dilute quasiparticle gas of nonlin
soliton modes yieldingz53/2 and a superposed spin wav
gas, corresponding toz52, the dynamic exponent for th
linear case. In II we also briefly discussed the operator a
bra associated with the Hamiltonian representation and
rived the field equations by means of a canonical repres
tation of the Fokker-Planck equation for the equivale
Burgers equation. Whereas the Bethe ansatz investigat
by their nature are restricted to special values of the coup
strength, corresponding to the fully asymmetric exclus
model @57#, our analysis is valid for general couplin
strength and thus constitutes an extension of the Bethe an
method to the general case of a continuum field theory. T
analysis in II was in many respects incomplete and preli
nary but it did indicate that the strong coupling fixed po
behavior is intrinsically associated with the soliton modes
the Burgers equation since they both provide aspects of
growth morphology and also, independently, yield the d
namic exponent.

Here we present aunifiedapproach to the noisy Burger
equation based on the Martin-Siggia-Rose~MSR! technique
in functional form @65–70#. This method supersedes th
analysis in II and does not make use of the mapping to a s
chain via a solid-on-solid model and therefore the impli
assumption of persistent universality classes under the m
pings. Clearly, the different formulations are basica
equivalent arising as they do from the same basic stocha
growth problem. The equivalence also indirectly demo
strates that the scaling properties of the different models,
the solid-on-solid model, the spin chain, and the field form
lation, fall in the same KPZ-Burgers universality class. T
present functional path integral method, which also can
seen as a generalization of the stationary distribution~1.11!
to the time-dependent nonlinear case, provides a many-b
description of the morphology of a growing interface
terms of soliton excitations and also gives insight into t
scaling behavior. Below we highlight some of our results
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4946 57HANS C. FOGEDBY
~i! The path integral formulation yields a compact d
scription of the noisy Burgers equation and provides exp
sions for the probability distributions and correlation fun
tions. Reformulated as a canonical Feynman-type ph
space path integral the approach allows fora principle of
least action. Hence the weight of the different paths or inte
face configurations, corresponding to the noise-induced
terface fluctuations, contributing to the path integral are c
trolled by an effective action. The role of the effectiv
Planck constant is here played by the noise correla
strengthD. The action in the path integral thus plays t
same role for the dynamical configurations as the Ham
tonian in the Boltzmann factor for the static configurations
equilibrium statistical mechanics.

~ii ! In the asymptotic weak noise limit the principle o
least action implies that the dominant configurations aris
from the solutions of the saddle point field equations cor
spond to a dilute nonlinear soliton gas with superposed lin
diffusive modes. The canonical formulation and the princi
of least action furthermore allow a dynamical descripti
and associate energy, momentum, and action with the
tons and the diffusive modes.

~iii ! The path integral formulation permits a ‘‘quantu
mechanical’’ interpretation in terms of an underlying no
Hermitian relaxational ‘‘quantum mechanics’’ or ‘‘quantu
field theory.’’ The noise-induced fluctuations here cor
spond to ‘‘quantum fluctuations’’ and the fluctuating grow
morphology is described by a Landau-type quasiparticle
of nonlinear ‘‘quantum solitons’’ and linear ‘‘quantum dif
fusive modes.’’ In the height field this corresponds to a m
phology of growing steps with superposed linear modes.
‘‘quantum soliton’’ dispersion law is gapless and charact
ized by an exponent 3/2; the ‘‘quantum diffusive mode
dispersion law is quadratic with a gap in the spectrum p
portional to the soliton amplitude.

~iv! In the present formulation the scaling properties
sociated with the ‘‘zero temperature’’ fixed point in the u
derlying ‘‘quantum field theory’’ follow as a by-produc
from the soliton and diffusive mode dispersion laws and
spectral representation of the correlations. The dominant
citation in the long wavelength–low frequency limit iden
fies the relevant universality class. The present many-b
formulation yields the known exponents. The dynamic ex
nentsz53/2 andz52 are associated with the soliton an
diffusive mode dispersion laws, respectively, whereas
roughness exponentz51/2 follows from a regularity prop-
erty of the form factor in the spectral representation. T
many-body formulation also explains the robustness of
roughness exponent under a change of universality class
provides a heuristic expression for the scaling function t
has the same structure as the probability distribution
Lévy flights.

~v! From a field theoretical point of view we identify th
noise strengthD as the effectivesmall parameter. Further-
more, the fundamental probability distribution or path in
gral has anessential singularityfor D50. Hence our ap-
proach is based on anonperturbative saddle point or steepe
descent approximationto the path integral. Although the dy
namic renormalization group method based on an expan
in the effective coupling strengthg5l2D/n3 and thus inD
yields the scaling exponents correctly and in combinat
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with a somewhatad hocmode coupling approach the scalin
function, we believe that the saddle point contributions
essential ingredients in elucidating both the physical m
phology and the scaling properties of the strong coupl
fixed point.

The path integral representation of the noisy Burg
equation presented here is equivalent to a full-fledged o
dimensional non-Hermitian non-Lagrangian field theory a
requires for its detailed analysis some advanced field th
retical techniques and methods from quantum chaos. In
present context we choose, however, a somewhat heur
approach to the path integral in order to elucidate the em
ing simple physical picture of a growing interface. This a
proach then also serves as a tutorial introduction to the fi
theoretical treatment to be presented elsewhere.

We also wish to comment on some recent work on
driven Burgers equation with noise at large length sca
modeling forced turbulence. This problem has been trea
using a variety of methods such as operator product exp
sions@71#, instanton calculations@72–75#, and replica meth-
ods@76#. In this context the nonperturbative instanton me
ods used in order to determine the tail of the veloc
probability distribution are related to the present soliton a
proach in that they are also based on a saddle point app
mation to the MSR functional integral and some of our
sults to be presented later have also been derived within
instanton approach.

The present paper is organized in the following way.
Sec. II we discuss the simple case of the linear Edwar
Wilkinson equation, mainly in order to emphasize the no
perturbative nature of the noise as regards the station
driven regime. Since the soliton modes in the noisy Burg
equation turn out to be of crucial importance in understa
ing the morphology and scaling properties, we summarize
Sec. III the results obtained in I concerning the solitons a
diffusive modes in the noiseless Burgers equation. In Sec
we set up the path integral formulation for the noisy Burg
equation in terms of the Martin-Siggia-Rose techniques
functional form. In Sec. V we perform a shift transformatio
of the path integral to a canonical Feynman path integ
form and discuss the canonical structure and the assoc
symmetry algebra. Section VI is devoted to an asympto
weak noise saddle point approximation and to the deriva
of the deterministic coupled field equations replacing
Burgers equation. In Sec. VII we solve the field equatio
and derive nonlinear soliton and linear diffusive mode so
tions. In Sec. VIII we discuss the dynamics of the solito
following from the principle of least action. The dominatin
morphology of a stochastically growing interface can be
terpreted in terms of a dilute soliton gas; this aspect is d
cussed in some detail in Sec. IX. The fluctuation spectr
about the soliton solutions is basically given by the pa
integral, however, in Sec. X we take a heuristic point of vie
and discuss the fluctuations as ‘‘quantum fluctuations’’ in
underlying non-Hermitian ‘‘quantum field theory.’’ Sectio
XI is devoted to a discussion of the scaling properties a
universality classes on the basis of the ‘‘elementary exc
tions’’ in the ‘‘quantum description.’’ We also present a he
ristic expression for the scaling function. Finally in Sec. X
we present a discussion and a conclusion.
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II. THE LINEAR EDWARDS-WILKINSON EQUATION:
THE ROLE OF NOISE

Here we review the properties of the linear case descri
by the noise-driven Edwards-Wilkinson equation~1.6!, in
particular in order to elucidate the role of the noise. For
slope field this equation is given by

]u

]t
5n¹2u1¹h ~2.1!

with the noiseh correlated according to Eq.~1.2!, i.e.,

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!. ~2.2!

Equation~2.1! has the form of a conservation law

]u

]t
52¹ j ~2.3!

with current

j 52n¹u2h. ~2.4!

We note that with average vanishing¹u at the boundaries
the conservation law implies that the average off-set in
height,*¹hdx, is conserved.

In wave number space,u(k,t)5*dx exp(2ikx)u(x,t), and
solving Eq.~2.1! as an initial value problem averaging ov
the noise according to Eq.~2.2! we obtain for the slope cor
relations

^u~k,t !u~2k,t8!&5@^u~k,0!u~2k,0!& i2~D/2n!#

3exp@2~ t1t8!nk2#

1~D/2n!exp@2ut2t8unk2#. ~2.5!

Here ^¯& i denotes an average over initial values, which
assumed independent of the noise average^¯&. The basic
time scale is set by the wave number dependent lifet
t(k)51/nk2, which diverges in the long wavelength lim
k→0, characteristic of a conserved hydrodynamical mo
We note that at short times compared tot(k), which sets the
time scale for the transient regime,^u(k,t)u(2k,t8)& is non-
stationary and depends on the initial correlations, wherea
long timest,t8@t(k) the correlations enter a stationary, tim
reversal invariant regime and depends only onut2t8u. For
vanishing initial slope,u(k,0)50, we obtain in particular the
mean square slope fluctuations

^uu~k,t !u2&5
D

2n
$12exp@22t/t~k!#%, ~2.6!

which approaches the saturation valueD/2n for t@t(k).
More precisely, it follows from Eq.~2.5! that for fixedt

2t8 the transient term can be neglected at times greater
a characteristic crossover timetco of order

tco;~1/nk2!ln~1/D!, ~2.7!

depending also on the noise strengthD. This time thus de-
fines the onset of the stationary regime. Fort@t(k), tco
noise-induced fluctuations built up and the mean squ
d

e

e

s

e

.
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an

re

slope fluctuations approach the constant valueD/2n. For D
→0, tco→` and the system never enters the stationary
gime.

The ‘‘elementary excitation’’ is the diffusive mod
u(k,t)}exp(6nk2t). In frequency space u(k,v)
5*dt exp(ivt)u(k,t) and the slope correlation function a
sumes the Lorentzian diffusive form, characteristic of a h
drodynamical mode,

^u~k,v!u~2k,2v!&5
Dk2

v21~nk2!2 , ~2.8!

with diffusive poles atvk
056 ink2, a strength given by

D/n2k2 and a linewidthnk2. We note that in the stationar
regime both the decaying and growing modes,u}exp
(6nk2t), contribute to the stationary correlations. Time rev
sal invariance is thus induced from the microscopic reve
ibility of the noise-driven system. In the transient regime f
t!t(k) the initial conditions enter and we must choose t
solution propagating forward in time,u}exp(2nk2t), in or-
der to satisfy causality.

From Eq.~2.8! we also obtain the scaling function

f ~w!5~D/2n!~4pn!21/2w21/2 exp@21/4nw#, ~2.9!

in accordance with the general form in Eq.~1.7! yielding the
EW exponents in Table I defining the EW universality cla
For largew f(w);w21/2; for small w f(w)→0 but with an
essential singularity forw50. In frequency–wave numbe
space the scaling form is

^u~k,v!u~2k,2v!&5k22g~v/k2! ~2.10!

and we directly infer the scaling function

g~w!5
D

n1w2 . ~2.11!

In Fig. 2 we have shown the slope correlation function a
the scaling functionsf andg in the EW case.

In contrast to the noisy Burgers equation, the EW eq
tion does not provide a proper description of a growing
terface. This is seen by expressing Eq.~2.1! in the form

]u

]t
5n¹2

dF

du
1¹h, ~2.12!

where the effective free energy is given by

F5
1

2 E dxu2. ~2.13!

Using the fluctuation-dissipation theorem to relate the no
strength to an effective temperatureT it then follows that the
EW equation describes time-dependent fluctuations in
equilibrium system with temperatureT5D/2n and with an
equilibrium distribution given by the Boltzmann factor in E
~1.11!, i.e.,

P~u!}expF2
2n

D
F G . ~2.14!
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We note here in the linear case that the noise strengD
seems to play a special role. WhereasD enters linearly in the
correlation function̂ uu&(k,v), the limit of vanishing noise
strength,D→0, appears as anessential singularityin the
stationary distribution~2.14!. Since the distributionP(u) ap-
propriately generalized to the time-dependent case is
generator for the correlation function^uu& and higher cumu-
lants, it is clearly the fundamental object and the role of
noise strengthD as a nonperturbative parameter an import
observation. More precisely the point is the followin
Whereas the damping constantn together with the relevan
wave numberk define the time scale for the transient regim
where the system has memory and evolves forward in t
in an irreversible manner, the presence of the noise is es

FIG. 2. In ~a! we depict the slope correlation function for th
diffusive mode in the linear EW case. The Lorentzian is cente
aboutv50 and has the ‘‘hydrodynamical’’ line widthnk2 vanish-
ing in the long wavelength limit. In~b! we show the scaling func
tions f for the space and time-dependent slope correlations.
large w f falls off as w21/2, for small w f→0 with an essential
singularity for w50. f is peaked at the value;0.12D/n for w
51/2n. In ~c! we have shown the scaling functiong for the wave
number–frequency-dependent correlations.g has a Lorentzian form
with heightD/n and width;n1/2 ~arbitrary units!.
e

e
t

e
n-

tial in order for the system to leave the transient regimeat all
and to enter the stationary regime where the system is t
reversal invariant, as, for example, reflected in the evenn
in v in the slope correlation function~2.8!. In the absence of
the noise the system simply decays owing to dissipation
less it is driven by deterministic currents at the boundar
Imposing the noise and driving the system stochastically
thus asingular process, as reflected mathematically by t
essential singularity in the distribution~2.14!.

Although the above observation of the nonperturbat
role of the noise strengthD is a trivial statement in the linea
case where is just reflects the structure of the Boltzm
factor, we will later show that in a more complete theory
a growing interface, described by the nonlinear noisy B
gers equation, it is essential to take into account nonper
bative contributions in the noise strengthD.

III. THE SOLITON MODE IN THE NOISELESS BURGERS
EQUATION

It turns out that the soliton excitation in thenoiselessBur-
gers equation when properly generalized play an impor
role in the understanding of the growth morphology a
strong coupling behavior of the noisy Burgers equation. I
we discussed in some detail the soliton and diffusive mo
solutions in the noiseless Burgers equation and performe
linear stability analysis. Here we briefly summarize tho
aspects of the analysis in I that will be of importance in t
discussion of the noisy case.

The noiseless or deterministic Burgers equation has
form @3–6#

]u

]t
5n¹2u1lu¹u, ~3.1!

and is a nonlinear diffusive evolution equation with a line
term controlled by the damping or viscosityn and a nonlin-
ear mode coupling term characterized byl. In the context of
fluid motion the nonlinear term gives rise to convection as
the Navier Stokes equation; for an interface the term co
sponds to a slope-dependent growth.

Under time reversalt→2t and the transformationu→
2u the equation is invariant providedn→2n. This indi-
cates that the linear diffusive term and the nonlinear conv
tive or growth term play completely different roles. The d
fusive term is intrinsically irreversible whereas the grow
term corresponding to a mode coupling leads to a cascad
wave number space and generates genuine transient gro
The transformationt→2t is absorbed inu→2u or, alter-
natively, l→2l, corresponding to a change of growth d
rection. We also note that the equation is invariant under
parity transformationx→2x providedu→2u. This feature
is related to the presence of a single spatial derivative in
growth term and implies that the equation only supports s
tons or shocks with one parity, that isright hand solitons.
Finally, the Burgers equation is invariant under the Galile
symmetry group~1.8! and~1.9!, that is a Galilean boost to a
frame moving with velocitylu0 is absorbed by a shift in the
slope field byu0 .

The irreversible and diffusive structure of Eq.~3.1! im-
plies that an initial disturbance eventually decays owing

d

or
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the damping termn¹2u. In the linear case the slope fiel
decays by simple diffusionu(x,t)}exp(2nk2t)exp(6ikx) as
discussed in Sec. II. In the presence of the nonlinear m
coupling term the equation also supports localized soliton
kink profiles@77–80# with given parity. In the static case th
symmetric positive parity orright handsoliton has the form

u~x!5u1 tanh@ks~x2x0!#, ~3.2!

ks5lu1/2n. ~3.3!

We have introduced the characteristic wave numberks set-
ting the inverse length scale associated with the static s
ton, x0 denotes the center of mass position. The width of
soliton is of order 1/ks and depends on the amplitudeu1 . In
the inviscid limit n→0 or for strong couplingl→`, the
wave numberks→` and the soliton reduces to a sharp sho
wave discontinuity.

Boosting the static soliton in Eq.~3.2! to a finite propa-
gation velocityv and at the same time shiftingu we obtain,
denoting the right and left boundary values byu6 , the soli-
ton solution

u~x,t !5
u11u2

2
1

u12u2

2

3tanhF l

4n
~u12u2!~x2vt2x0!G ~3.4!

with velocity v given by the soliton condition

u11u252
2v
l

. ~3.5!

We note that the soliton condition~3.5! is consistent with the
fundamental Galilean invariance and remains invariant un
the transformationv→v1lu0 andu6→u62u0 . Also, un-
like the case for the Lorentz invariantf4 and sine-Gordon
evolution equations@77#, the propagation velocity in the
present case is tied to the amplitude boundary values of
soliton—a feature of the Galilean invariance. In Fig. 3 w
have depicted theright hand soliton solution given by Eq.
~3.4! and the associated height fieldh.

In the linear case forl50 case the diffusive modes wit
dispersion

vk
052 ink2 ~3.6!

‘‘exhaust’’ the spectrum of relaxational modes. ForlÞ0 the
soliton profile acts as a reflectionless Bargman potential
ing rise to a bound state at zero frequency, correspondin
the translation mode of the soliton—the Goldstone mode
storing the broken translational invariance, and a band
phase-shifted diffusive scattering modes@80#. The resulting
change of density of states is in accordance with Levinso
theorem in that the potential traps a bound state and dep
the continuum of one state. In the presence of the soliton
diffusive modes furthermore develop a gap in the spectr
of vk as depicted in Fig. 4,

vk52 in~k21ks
2!. ~3.7!
e
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An asymptotic analysis of the noiseless Burgers equa
in the inviscid limitn→0 @81# shows that an initial configu-
ration breaks up into a ‘‘gas’’ of propagating and coalesc
kinks connected by ramp solutions of the formu}const
2x/lt. This allows for the following qualitative picture o
the transient time evolution: Although the nonlinear mo
coupling term is incompatible with a proper superpositi
principle we can still along the lines of the evolution
integrable one dimensional evolution equations@77# envis-
age that an initial configuration ‘‘contains’’ a number o
right handsolitons connected by ramps. In the course of tim
the solitons propagate and coalesce. Superposed on the
ton gas is a gas of phase-shifted diffusive modes. As
cussed in I the gap in the diffusive spectrum can be ass
ated with the current flowing towards the center of t
solitons. The damping of the configuration predominan
takes place at the center of the soliton whereu varies rapidly

FIG. 3. We show a single moving soliton profile propagating
the left and the corresponding smoothed cusp in the growth pro
This configuration is driven by currents at the boundaries, co
sponding to nonvanishingu6 and is persistent in time~arbitrary
units!.

FIG. 4. We show the diffusive dispersion law in the presence
a soliton. The gap in the spectrum is given bynks

25l2u1
2 /4n where

u1 is the soliton amplitude. The dashed line indicates the gap
spectrum in the linear case~arbitrary units!.
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4950 57HANS C. FOGEDBY
thus enhancing the damping termn¹2u. We also note that
only parity breakingright handsolitons are generated in th
noiseless Burgers equation. In Fig. 5 we have shown
transient evolution of the slope field and the associa
height field.

IV. PATH INTEGRAL REPRESENTATION
OF THE NOISY BURGERS EQUATION

In this section we begin the analysis of the noisy Burg
equation. In our discussion in Sec. II of the linear EW eq
tion we noticed that the noise strengthD enters in a nonper
turbative way in the stationary distribution in Eq.~1.11!.
Whereas this, of course, is a trivial observation in the lin
case since the EW equation describes fluctuations in equ
rium andD}T, that is the singularity structure is the same
the low-T limit of the Boltzmann factor exp(2E/T), the pres-
ence of the nonlinear mode coupling growth term in t
noisy Burgers equation renders the situation much m
subtle. We are now dealing with an intrinsically nonequili
rium situation. The noise drives the system into a far-fro
equilibrium stationary state and equilibrium statistical m
chanics does not apply. On the other hand, from our stud
the noiseless Burgers equation, we have learned that the
ton excitations play an important role in the dynamics of
morphology of a growing interface and is a direct signat
of the nonlinearity. The issue facing us is then how to
clude both the nonperturbative aspects of the noise and
nonlinear soliton structure in a consistent way. It turns
that the functional formulation of the Martin-Siggia-Ro

FIG. 5. We here depict the transient evolution of the slope fi
u from an initial configurationu0 in the case of the noiseless Bu
gers equation. We have also shown the evolution of the assoc
height field h. The transient morphology consists of propagati
right handsolitons connected by ramps~arbitrary units!.
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techniques provides the appropriate formal and practical
guage for such an approach@65–70#.

Our starting point is the noisy Burgers equation~1.1! for
the fluctuating slope fieldu, i.e.,

]u

]t
5n¹2u1lu¹u1¹h, ~4.1!

which has the structure of a conserved nonlinear Lange
equation with current

j 52¹u2
l

2
u22h. ~4.2!

For the noise we assume a Gaussian distribution

P~h!}expF2
1

2D E dxdth~xt!2G , ~4.3!

whereh is correlated according to Eq.~1.2!, i.e.,

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!. ~4.4!

Unlike the transient relaxation of an initial value config
ration described by the deterministic Burgers equation,
noisy Burgers equation is driven continuously by the co
served noise¹h, corresponding to a fluctuating compone
of the currentj in Eq. ~4.2!. Energy is fed into the system vi
the noise and dissipated by the linear damping term. T
nonlinear mode coupling gives rise to a cascade in w
number space corresponding to ‘‘dissipative structures’’
the growth morphology. This mechanism changes the pr
ability distributions and associated correlations~moments!,
scaling exponents, and scaling functions from the EW c
in Sec. II. In other words, Eq.~4.1! acts as a nonlinear bo
that transforms the input noise¹h to an output slope fieldu.

In the Martin-Siggia-Rose techniques the probability d
tribution for the slope fieldP(u) and the correlationŝuu&h
are conveniently derived from an effective partition functi
or generator@42#

Z~m!5 K expF i E dxdtu~x,t !m~x,t !G L
h

. ~4.5!

Here m(x,t) is a generalized chemical potential or extern
conjugate field coupling to the slope fieldu(x,t) and ^¯&h
denotes an average over the input noiseh, implementing the
nonlinear stochastic relationship provided by the Burg
equation~4.1!. In terms ofZ we have, for example, the prob
ability distributionP(u)5^d„u2u(x,t)…&h ,

P„u~x,t !…5E )
xt

dm

3expF2 i E dxdtu~x,t !m~x,t !G
3Z„m~x,t !… ~4.6!

and the correlation function

d

ed
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^u~x,t !u~x8,t8!&52F dZ~m!

dm~x,t !dm~x8,t8!G
m50

; ~4.7!

higher moments are derived in a likewise manner. In orde
incorporate the nonlinear constraint imposed by the Burg
equation we insert the identity

E )
xt

dudS ]u

]t
2n¹2u2lu¹u2¹h D51 ~4.8!

in the partition functionZ(m); for a first order evolution
equation one can show that causality implies that the Ja
bian relatingdu to ]u/]t equals unity@82#. Finally, expo-
nentiating the delta function constraint in Eq.~4.8! and av-
eraging over the noise distribution according to Eq.~4.3! we
obtain

Z~m!5E )
xt

dudp exp@ iG#expF i E dxdtum G , ~4.9!

where the effective functionalG is given by

G5E dxdtFpS ]u

]t
2n¹2u2lu¹uD1

i

2
D~¹p!2G . ~4.10!

The path or functional integral~4.9! with G given by Eq.
~4.10! effectively replaces the stochastic Burgers equat
~4.1!. The path integral is deterministic and the noiseh is
replaced by the different configurations or paths contribut
to Z. In this senseZ is an effective partition function for the
dynamical problem andG an effective Hamiltonian, analo
gous to the Hamiltonian in the partition functionZ
5( exp(2H/T) in equilibrium statistical mechanics. W
also note that the transcription of the Burgers equation t
path integral leads to the appearance of an additional n
field p, arising from the exponentiation of the delta functio
constraint in Eq.~4.8! @65–70#, and replacing the stochast
noise in Eq.~4.1!.

Since the path integral formulation provides a field the
retical framework allowing for functional and diagramma
techniques, Feynman rules, skeleton graphs, Ward ident
etc., it is mostly used in order to generate perturbation
pansions in powers of the nonlinear couplinglu¹u, forming
the basis for the dynamic renormalization group meth
@42–44,55,83–85#. It is, however, worthwhile noting tha
such a field theoretic expansion has precisely the same s
ture as the one produced by directly iterating the Burg
equation~4.1! in powers oflu¹u and averaging over the
noise term by term according to Eq.~4.4!.

Also, corroborating our remarks in Sec. II, we notice fro
the structure of the path integral~4.9! and ~4.10! that the
noise strengthD appears as a singular parameter in the se
thatD→0 gives rise to the singular delta function constra
for the Burgers equation. This limit is, however, much mo
transparent when we expressZ in a ‘‘canonical form.’’
to
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V. CANONICAL TRANSFORMATION
TO A HAMILTONIAN FORM:

PHASE SPACE PATH INTEGRAL SYMMETRIES

By inspection of the path integral in Eqs.~4.9! and~4.10!
we notice that it has the same structure as the usual p
space Feynman path integral@42# as regards the kinetic term
p]u/]t in F but that otherwisep and u do not appear in a
canonical combination. This situation can, however, be re
edied by performing a simple complex shift of the noi
variablep,

p5
n

D
~ iu2w!, ~5.1!

in Eqs. ~4.9! and ~4.10!. The partition functionZ(m) can
then be written as

Z~m!5const3E )
xt

dudw expF i
n

D
SGexpF i

n

D
SBG

3expF i E dxdtum G , ~5.2!

where the surface contributionSB has the form

SB5E dxdtH ]

]t F i

2
u22uw G1¹

3Fn~w2 iu !¹u1
l

2
wu22 i

l

3
u3G J . ~5.3!

However, assuming that the path integral operates in a sp
time LT box, i.e.,uxu,L/2 and utu,T/2, and imposing, for
example, vanishing boundary conditions foru in both space
and time the surface contributionSB to the action vanishes
identically.

The bulk contribution to the action is given by the cano
cal form @86#

S5E dxdtFu
]w

]t
2H~u,w!G ~5.4!

with the complex Hamiltonian density

H52 i
n

2
@~¹u!21~¹w!2#1

l

2
u2¹w. ~5.5!

The Hamiltonian density consists of two terms: A rela
ational or irreversible harmonic componen
2 i (n/2)@(¹u)21(¹w)2#, corresponding to the diffusive as
pects of a growing interface, i.e., the linear damping, an
nonlinear reversible mode coupling component, (l/2)u2¹w,
associated with the drivel.

One feature of the transcription of the noisy Burge
equation to a canonical path integral form is that the eff
tive Hamiltonian density~5.5! driving the dynamics of the
system is in general complex. This particular aspect was
encountered in the treatment in II where the growth term
the spin chain Hamiltonian turned out to be complex; s
also Ref.@57#. We also notice that the doubling of variable
i.e., the replacement of the stochastic noiseh by an addi-
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4952 57HANS C. FOGEDBY
tional noise fieldw in the path integral, was also encounter
in the treatment in II in the canonical oscillator represen
tion of the spin variables.

It is here instructive to compare the above path integ
for the relaxational growth dynamics of the Burgers equat
with the usual phase space path integral formulation in qu
tum mechanics or quantum field theory@42#. Here the parti-
tion function has the form

Z5E )
xt

dpdq expF i

\
SG ~5.6!

with the classical action

S5E dxdtFp
]q

]t
2H~p,q!G , ~5.7!

where p and q are considered canonically conjugate va
ables andH(p,q) the usual classical Hamiltonian density.

Comparing Eqs.~5.6! and~5.7! with Eqs.~5.2!–~5.4! it is
evident that the structures of the two path integral formu
tions are quite similar and we are led to identify the no
strengthD/n with an ‘‘effective’’ Planck constant and th
Hamiltonian densityH as the generator of the dynamics. T
classical limit thus corresponds to the weak noise limitD
→0 and in analogy with the quasiclassical or WKB appro
mation in quantum mechanics,D→0, constitutes a singula
limit in accordance with our previous remarks. The partiti
function Z with the actionS given by Eqs.~5.2!–~5.5! thus
constitutes the required generalization of the stationary
tribution P(u)}exp@2(n/D)*dxu2# in Eq. ~1.11! to the time-
dependent case@87#. By comparison we furthermore con
clude that the slope fieldu and the noise fieldw, replacing
the Gaussian noise in Eq.~4.1!, are canonically conjugate
momentum and coordinate variables satisfying the Pois
bracket algebra@88#

$u~x!,w~x8!%5d~x2x8! ~5.8!

and that the Hamiltonian or energy

H5E dxH5E dxF2 i
n

2
@~¹u!21~¹w!2#1

l

2
u2¹w G

~5.9!

is the generator of time translations according to the eq
tions of motion

]u

]t
5$H,u%, ~5.10!

]w

]t
5$H,w%. ~5.11!

Drawing on the mechanical analog the momentumP, the
generator of translations in space, is also easily identi
from the basic transformation properties,

¹u5$P,u%, ~5.12!

¹w5$P,w%, ~5.13!
-

l
n
n-

-
e

-

s-

n

a-

d

and it follows that

P5E dxg, ~5.14!

g5u¹w, ~5.15!

whereg is the momentum density.
In order to elucidate the canonical structure of the p

integral ~5.2!–~5.5! and the analogy with the usual pha
space Feynman path integral we have generated a com
Hamiltonian~5.5!. Note, however, that by formally rotating
the noise field in phase spacew→ iw the Hamiltonian and the
action become purely imaginary, leading to a real path in
gral.

The symmetries discussed in the context of the quan
spin chain representation in II are also easily recovered h
Noting thatH is invariant under a constant shift of the noi
field, w→w1w0 , we infer that the integrated slope field

M5E dxu, ~5.16!

i.e., the total offset of the height field,h5*dxu, across the
interface, is a constant of motion,

$H,M %50. ~5.17!

This is consistent with the local conservation law followin
from the structure of the Burgers equation, but is here
consequence of the structure of the path integral. The inv
ance under a shift ofw is equivalent to the invariance of th
Burgers equation under a shift of the noiseh in the noise
term ¹h. Similarly, under a constant shift of the slope fie
u→u1u0 , we have, introducing the momentum densityg,
H→H1lu0g1(l/2)u0

2¹g, or since the last term is a tota
derivative, H→H1lu0P, corresponding to an associate
Galilean transformation with velocity2lu0 . For the inte-
grated noise field

F5E dxw ~5.18!

we thus obtain the Poisson bracket algebra

$H,F%5lP, ~5.19!

which together with

$H,M %5$H,P%50, ~5.20!

$P,F%5$P,M %50, ~5.21!

and

$F,M %5L, ~5.22!

defines the symmetry algebra. We note again that the n
linear coupling strengthl enters the Poisson bracket~5.19!
and thus is a structural constant of the symmetry group.

We finally wish to comment on the properties of the pa
integral in Eqs.~5.2!–~5.5! under time reversalt→2t. By
construction the path integral applies at late times compa
to any initial timet0 , defining the initial value of the slope
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57 4953SOLITON APPROACH TO THE NOISY BURGERS . . .
configurationu0 . This implies that the noise in the Burge
equation has driven the system into a stationary time reg
and that the transients associated withu0 have died out. In
the linear case forl50, we note by inspection that the pa
integral is invariant under the combined operationt→2t
and w→2w, implying that the slope correlations are n
only stationary but also invariant under time reversal. This
in agreement with the analysis of the noisy EW equation
Sec. II where we obtained̂uu&(k,v)5Dk2/@v21(nk2)2#,
implying that ^uu&(x,t) depends onutu. This is consistent
with the description of an equilibrium interface and is just
expression of microscopic reversibility. In the presence
the drive for lÞ0 the path integral is invariant under th
combined transformationt→2t, w→2w, and l→2l
showing that the term (l/2)u2¹w in the Hamiltonian~5.9!
gives rise to a proper growth direction thereby breaking ti
reversal invariance, that is, we are dealing with a genu
nonequilibrium phenomenon.

VI. FIELD EQUATIONS IN THE WEAK NOISE LIMIT:
SADDLE POINT APPROXIMATION

The basic structure of the path integral~5.2!–~5.5! is il-
lustrated by the simple one-dimensional integral

I ~D!5E du expF i
1

D
S~u!Gexp@ imu#, ~6.1!

whereD is the small parameter~the noise strength!. In the
limit D→0 the integralI (D) is approximated by a steepe
descent calculation, which amounts to an expansion ofS(u)
about an extremumu0 , S(u);S(u0)1 1

2 S9(u0)(u2u0)2

and a subsequent calculation of a Gaussian integral.
small D we then obtain

I ~D!5expF i
1

D
S~u0!Gexp@ imu0#expF2 im2

D

2S9~u0!G
3F22p iD

S9~u0! G1/2

. ~6.2!

The leading contribution toI (D) is given by exp@iS(u0)/D#
and is thus determined by the extremal value of the act
This part, however, goes along with a multiplicative fact
@22p iD/S9(u0)#1/2, arising from the Gaussian integra
sampling the fluctuations about the stationary points;
term is the first in an asymptotic expansion in powers
D1/2. We notice that there is an essential singularity forD
50, signaling the nonperturbative aspects of a steepest
scent calculation; the result cannot be obtained as a pe
bation expansion in powers ofD. The analysis of the path
integral now essentially follows the same procedure bu
rendered much more difficult owing to the field theoretic
phase space structure of the problem. In Fig. 6 we have
picted the principle of a saddle point or steepest descent
culation of I (D).

In the weak noise limitD→0 the asymptotically leading
contribution to the path integral thus arises from configu
tions or paths (u,w) corresponding to an extremum or st
tionary point of the actionS. Invoking the variational condi-
tion dS50 with respect to independent variations of t
e
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n

f
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slope fieldu and the canonically conjugate noise fieldw, du
and dw, with vanishing variations at the boundaries of t
space time LT box, we readily infer, using Eq.~5.9!, the
classical equations of motion@86#

]u

]t
52

dH

dw
5$H,u%, ~6.3!

]w

]t
51

dH

du
5$H,w%. ~6.4!

Implementing the functional derivation or, equivalently, u
ing the Poisson bracket relation~5.8!, we obtain

]u

]t
52 in¹2w1lu¹u, ~6.5!

]w

]t
51 in¹2u1lu¹w. ~6.6!

The above coupled field equations~6.5! and ~6.6! are a fun-
damental result of the present analysis. They provide ade-
terministic description of the noisy Burgers equation in th
asymptotic nonperturbative weak noise limit. The equatio
have the same form as the ones derived in II based on
quasiclassical limit of the quantum spin chain representat
Furthermore, the parameter identification is in accorda
with the ‘‘quantum representation’’ of the Fokker-Planc
equation. As regards the considerations in II this dem
strates that the precise identification of the quasiclass
limit is in fact a weak noise limit in the exact path integr
representation of the Burgers equation.

First of all we observe that the field equation for the slo
field u has the form of a conservation law,]u/]t52¹u,
with current j 52(l/2)u21 in¹w. The fluctuating compo-
nent in the current in the noisy Burgers equation,j
5 i (l/2)u22n¹u2h, is thus replaced by the noise fieldw
and admissible solutions must yield an imaginary noise fi
in order to render a real current, corroborating our remark
the previous section. The field equation for the noise field
parametrically coupled to the slope field and in the prese
of the coupling l driven by the momentum densityg
5u¹w.

Secondly, we confirm that the field equations are invari
under the Galilean transformation~1.8! and ~1.9!,

FIG. 6. Here we depict in graphic form the basic principle of
asymptotic steepest descent or saddle point calculation. The lea
contribution to the integralI (D) in Eq. ~6.1! arises from the saddle
point u0 ~in the figure a minimum! and nearby fluctuationsdu
5u02u ~arbitrary units!.



et
th

e
d
in
n

ed

is
rip
. I
d
e

ua

-

rre
e

io
d
th
e
on

a
t

h
er
e
em
n
o
o

an
e
s

ura-

o-
set
etic
nary
tion
ope
ise
ace

he

r,

o

4954 57HANS C. FOGEDBY
u~x,t !→u~x2lu0t,t !2u0 , ~6.7!

w~x,t !→w~x2lu0t,t ! ~6.8!

and under an arbitrary shift inw

w~x,t !→w~x,t !2w0 , ~6.9!

in accordance with the general discussion of the symm
algebra and consistent with the symmetry properties of
noiseless and noisy Burgers equations.

As mentioned in Sec. I the instanton approach to driv
turbulence in the Burgers equation is also based on a sa
point approximation to the Martin-Siggia-Rose functional
Eq. ~4.10!. In particular, applying the shift transformatio
~5.1! to the saddle point equations in Ref.@72#, also dis-
cussed in Refs.@75#, and considering short range correlat
noise, one obtain the field equations~6.5! and~6.6!. Also, the
expressions for the energy and momentum in Eqs.~5.9! and
~5.14! were discussed in Refs.@72–75#.

One final comment on the classical zero noise limit. W
maintain that in the asymptotic nonperturbative weak no
limit the coupled field equations provide the correct desc
tion of the leading behavior of the noisy Burgers equation
order to obtain the noiseless Burgers equation discusse
Sec. III we must confine the noise field strictly to the lin
w5 iu in (u,w) phase space in which case both field eq
tions reduce to the noiseless Burgers equation~3.1!. Note,
however, that settingw52 iu we obtain the noiseless Bur
gers equation withn replaced by2n supportinggrowing
linear modes and aleft hand nonlinear soliton mode—the
missing modes necessary in order to describe the co
morphology in the noise-driven stationary regime. In oth
words, we anticipate that the linesw56 iu define regions
for the stationary steepest descent or saddle point solut
of the field equations. The vicinity of these lines correspon
to the Gaussian fluctuations about the stationary points,
is the linear diffusive modes. This picture will in fact b
borne out when we turn to an analysis of the field equati
in the next section. In Fig. 7 we have shown the extrem
paths, corresponding to the saddle point solutions and
nearby paths characterizing the fluctuations in (u,w) phase
space.

VII. SOLITON AND DIFFUSIVE MODE SOLUTIONS
OF THE FIELD EQUATIONS

The field equations~6.5! and ~6.6! for u andw constitute
a set of nonlinear coupled partial differential equations. T
general solution is not known. Unlike the noiseless Burg
equation, which can be solved by means of the nonlin
Cole-Hopf transformation, similar substitutions do not se
to work for the field equations. Presently, it is not know
whether the field equations belong to the small class of n
linear evolution equations, which can be integrated partly
completely by means of the inverse scattering method
related techniques. We are therefore obliged to choos
more pedestrian approach and search for special solution
the equations@77,78,80#.
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A. Stationary states

We note that the constant slope-constant noise config
tions

u5u0 , ~7.1!

w5w0 ~7.2!

are trivial saddle point solutions with vanishing energy, m
mentum, and action. They form an infinitely degenerate
and correspond to the zero-energy aligned ferromagn
spin states discussed in paper II. The degenerate statio
slope configurations are related by a Galilean transforma
and we shall in general choose a state with vanishing sl
corresponding to a horizontal interface. As regards the no
field we are free to choose it equal to zero. In the phase sp
plot in Fig. 7 the background stationary state or t
‘‘vacuum’’ thus corresponds to the origin (u,w)5(0,0).

B. Linear diffusive modes

In the linear case forl50 the HamiltonianH is harmonic
in the fieldsu andw. The coupled field equations are linea

]u

]t
52 in¹2w, ~7.3!

]w

]t
51 in¹2u, ~7.4!

FIG. 7. In ~a! we show the ‘‘classical’’ path corresponding t
the stationary point of the actionS in the weak noise limit and
nearby paths corresponding to fluctuations. In~b! we show the
saddle point regions in (u,w) phase space~arbitrary units!.
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and describe the weak noise limit of the EW equation. E
panding about the stationary state (u0 ,w0)5(0,0) the equa-
tions readily admit the solutions

u~xt!5(
k

@uk
~1 !e2 ivk

0t1 ikx1uk
~2 !e1 ivk

0t2 ikx#, ~7.5!

w~xt!5 i(
k

@uk
~1 !e2 ivk

0t1 ikx2uk
~2 !e1 ivk

0t2 ikx#, ~7.6!

with the quadratic diffusive dispersion law

vk
052 ink2. ~7.7!

Sinceu is real we have (uk
(6))* 5u2k

(6) , implying thatw is
purely imaginary as discussed above. We also note tha
solution~7.5!, unlike the solution of the noiseless EW equ
tion, includes both growing and decaying solutions. As d
cussed earlier this feature is consistent with the time reve
invariance in the stationary regime.

C. Nonlinear soliton modes

In order to treat the nonlinear aspects of the field eq
tions we employ the same method as in the analysis of
noiseless Burgers equation and look for static solutions.
ing the Galilean invariance propagating solutions are t
easily generated by a transformation to a moving frame
companied by a shift ofu. The static case,]u/]t5]w/]t
50, corresponds to the actionS52*dxdtH(u,w) and the
solutions are given by the stationary points of the Ham
tonian H. Multiplying the static field equations by¹w and
¹u, respectively, we obtain¹w¹2w1¹u¹2u50, or by
quadrature, imposing the boundary conditions of vanish
slope,¹u5¹w50 for x→6L/2, the slope condition

~¹w!21~¹u!250. ~7.8!

Solving the slope condition we obtain

¹w5 im¹u ~7.9!

parametrized by the parity indexm561, which inserted in
the static field equations yields

mn¹2u1lu¹u50. ~7.10!

This equation has the same form as the static limit of
noiseless Burgers equation~3.1! with dampingmn, and we
obtain the static solution~3.2! with n replaced bymn, i.e.,
6n,

u~x!5u1 tanhFmlu1

2n
~x2x0!G . ~7.11!

The solution~7.11! has the form of a static, localized, sym
metric soliton or kink with amplitude 2uu1u, center of mass
x0 , width 2n/(luu1u), approaching 6muu1u for x→
6L/2. In the limit of vanishing damping,n→0, the soliton
becomes a sharp discontinuity or shock in the slope fi
The static soliton connects two degenerate stationary s
with slopes6uu1u. However, unlike the sine-Gordon solito
@77,89#, which is characterized by a topological quantu
-

he
-
-
al

-
e

s-
n
c-

-

g

e

d.
tes

number, or thew4 soliton @77,89#, which connects the two
degenerate ground states defined by the double-well po
tial, the Burgers soliton has an arbitrary amplitudeuu1u cor-
responding to the infinitely degenerate stationary states.
thermore, we note the interesting fact that unlike the cas
the noiseless Burgers equation, where we only have a si
right handsoliton mode, corresponding tom511, the bro-
ken reflection or parity symmetry is restored in the no
case. The noise drives the interface into a stationary state
in the process excites bothright and left handsolitons. This
mechanism in the nonlinear case is equivalent to the exc
tion of both growing and decaying diffusive modes in t
EW case. This ‘‘doubling’’ of soliton solutions in the drive
case was also observed in Ref.@73#.

The static soliton is a special configuration connect
stationary states with opposite slopes. However, since
underlying field equations are invariant under the Galile
symmetry group~6.7! and~6.8! it is an easy task to construc
a propagating soliton solutions by means of a Galilean tra
formation. Similar to the discussion of the noiseless Burg
equation we obtain, introducing the boundary valuesu6 for
x→L/2, the soliton condition~3.5!, i.e.,

u11u252
2v
l

~7.12!

and the moving soliton solution

u~xt!5
u11u2

2
1

u12u2

2

3tanhF l

4n
uu12u2u~x2vt2x0!G , ~7.13!

connecting stationary states with slopesu1 and u2 ; note
that we have absorbed the parity indexm in the sign ofu1

2u2 . The soliton has center of massx0 , propagates with
velocity v52l(u11u2)/2, has the width 4n/(luu1

2u2), and amplitudeuu12u2u. In the limit of vanishing
dampingn→0, the inviscid limit, or large drivel, the soliton
becomes a shock wave, i.e., a discontinuity in the slope fi
for finite damping the shock wave front is smoothed by d
sipation. For vanishing amplitude,u12u2→0, the soliton
merges continuously into the stationary stateu15u2 .

Finally, integrating the slope condition~7.8!, which by
inspection also holds for the propagating soliton, and us
the invariance property~6.9! in order to set the integration
constant equal to zero, we obtain

w5 imu, ~7.14!

yielding the static and propagating soliton solutions for t
associated noise field and in accordance with the saddle p
regions in Fig. 7. In Fig. 8 we have depicted the static so
tons and the associated smoothed cusps in the height fie

D. Multisoliton solutions: Boundary conditions

In addition to defining the path integral in a finite LT bo
we must also specify appropriate boundary conditions for
slope and noise fields in accordance with the physical si
tion. For a growing interface it is convenient to assume
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horizontal interface at the boundaries equivalent to a van
ing slope field. This corresponds to a vanishing determini
component in the current in Eq.~4.2! at the boundaries an
implies that the interface is only driven by the noise. Ho
ever, since the single soliton solution discussed above c
nects stationary states with different slopes correspondin
a nonvanishing current, we must pair at least two solitons
opposite parity in order to satisfy the boundary conditio
By inspection of the field equations~6.5! and~6.6! we note,
however, that a nonoverlapping two-soliton configurati
u(1)1u(2) connected by a segment of constant slope is
approximate solution to the field equations and therefore
responds to an extremum of the action in the path integ
The correction term is given byl(u(1)¹u(2)1u(2)¹u(1))
whose contribution to the action we can ignore for no
overlapping well-separated solitons. Furthermore, the a
ment can be generalized to a multisoliton configuration c
nected by segments of constant slope. It is a well-kno
feature of path integral instanton or solitons configuratio
that in order to obtain the correct asymptotic behavior o
must sum over a gas of nonoverlapping instantons or soli
@89#. The situation is the same in the present somewhat m
complicated context. In order to satisfy the boundary con
tions of vanishing slope and to collect all the leading con
butions in the asymptotic weak noise limit the structure
the path integral implies the formation of a dilute gas
nonoverlapping solitons. In Fig. 9 we have shown the cas
two nonoverlapping soliton solutions.

VIII. DYNAMICS OF SOLITONS:
PRINCIPLE OF LEAST ACTION

It is a fundamental aspect of the canonical form of t
path integral for the noisy Burgers equation that it suppora
principle of least action@86#. Therefore, unlike the noiseles

FIG. 8. In ~a! and ~b! we show the staticright and left hand
solitons and the smoothed static downward and upward cusps i
associated height field~arbitrary units!.

FIG. 9. We show the overlap between two well-separated s
tons ~arbitrary units!.
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Burgers equation where there is no underlying canon
structure, the asymptotic weak noise soliton and diffus
mode solutions are derived from a variational principle. F
thermore, we can associate an effective action, energy,
momentum with a particular phase space configuration
growth pattern.

The energy densitye is generally given by Eq.~5.5!. In-
serting the slope condition~7.8! valid for the soliton solu-
tions, the harmonic part ofe cancels and the soliton solution
exclusively contribute to the growth term, i.e.,e
5(l/2)u2¹w, or in terms of the momentum density~5.15!,
e5(l/2)ug. Inserting the soliton constraint~7.9! the energy
density also takes the form

e5~l/2!imu2¹u. ~8.1!

We note that the energy density is localized to the position
the soliton whereu varies most rapidly. For the soliton en
ergy we thus obtain by quadrature in terms of the bound
valuesu6 ,

E5 im
l

6
@u1

3 2u2
3 #. ~8.2!

In a similar manner the soliton momentum in Eqs.~5.14! and
~5.15! is given by

P5 im 1
2 @u1

2 2u2
2 # ~8.3!

and finally from Eq. ~5.4!, using ]w/]t52v¹w for the
boosted static soliton, the soliton action

S52T@Pv1E#, ~8.4!

which also follows from the Galilean invariance ofS @86#.
The surface contribution in Eq.~5.3! in terms ofE andP has
the form

SB52T@~m22!Pv1~2m23!E#, ~8.5!

and the functionalG in Eq. ~4.10! in the original MSR form
is

G5
n

D
T~12m!@Pv12E#. ~8.6!

We notice that the asymmetry betweenright and left hand
solitons is reflected inG. For theright hand soliton for m
51, present in the noiseless case,G vanishes and the weigh
in Z(m) in Eq. ~4.9! is unity; theleft handsoliton excited by
the noise carries a nonvanishingG.

The purely imaginary character ofE, P, andS is a feature
of our choice of convention in establishing the canoni
path integral in Eqs.~5.2!–~5.5!. In order to exploit the for-
malism of analytical mechanics and the structure of
phase space Feynman path integral we have chosen the
field w in such a manner thatu andw appear as canonically
conjugate variables satisfying the usual Poisson brac
~5.8!. As discussed earlier this implies thatw has to be purely
imaginary in the case of the weak noise saddle point so
tions. The complex character ofE and P is consistent with
the relaxational and propagating aspects of the soliton mo
as also observed in the Fokker-Planck description in pape
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The main properties ofE and P in the present dynamica
context are that they serve as generators of translation
time and space, respectively@86#. The nonlinear energy
momentum relationship is characteristic of nonlinear soli
solutions@64# and is different from the simpleE-P relation-
ship encountered in the Lorentz invariantw4 or sine-Gordon
equation@77#. We also note that the damping constantn does
not enter in the expressions forE andP, which only depend
on the boundary valuesu6 and the drivel. In the weak noise
limit the dynamics of soliton solutions is thus entirely deco
pled from the dynamics of the linear diffusive modes.

Let us specifically consider a soliton configuration sa
fying the boundary condition of left vanishing slope, i.e
u250 for x52L/2. The soliton condition~7.12! then im-
plies the right boundary valueu1522v/l, relatingu1 to
the propagation velocityv. The soliton with positive parity,
u1.0, propagates left with negative velocity, whereas
soliton with opposite parity,u1,0, propagates in the for
ward direction. ForE andP we infer for both parities

E5
4

3
i
uvu3

l2 , ~8.7!

P522i
vuvu
l2 , ~8.8!

S5
2

3
iT

uvu3

l2 . ~8.9!

The velocityv52lu1/2 characterizes the kinematics of th
soliton and is related to the amplitude whereasE and P
determine the transformation properties. Eliminating the
locity we obtain the soliton dispersion law

EP5 il
&

3
uPu3/2, ~8.10!

where sgn(ImP)52sgnv. We note that the nonlinear loca
ized soliton excitation has aqualitativelydifferent dispersion
law from the linear extended diffusive mode dispersion l
v52 ink2. They are both gapless modes but the expone
are different. The consequences of this aspect on the s
trum and scaling properties will be investigated later wh
we consider the fluctuations in more detail, but we alrea
note here that the change in the exponent, which can
identified with the dynamic exponentz, is related to the dif-
ferent universality classes for the EW and Burgers cases

Since the energy and momentum densities are localize
the soliton positions it follows that they are additive quan
ties for a multisoliton configuration and the general expr
sions ~8.2!, ~8.3!, and ~8.4! allow us to evaluate the tota
energy, momentum, and action for an arbitrary configurat
constructed from well-separated nonoverlapping solitons

IX. A GROWING INTERFACE
AS A DILUTE SOLITON GAS

We are now in position to present a coherent picture
the morphology of a statistically driven growing interface.
the weak noise limitD→0 the principle of least action,
which operates in the present context, implies that the
in
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tionary points in (u,w) phase space correspond to solito
and multisoliton configurations connected by segments
constant slope. In addition there will be superposed diffus
modes. In the nonlinear case the soliton configurations de
mine the dominant features of the growth morphology a
will be considered here. The superposed diffusive modes
be discussed in the next section.

The weight of a particular soliton configuration in th
path integral is given by the action that is an additive qu
tity for a dilute gas of solitons. The soliton configurations a
assumed to be excited with respect to a stationary stat
vanishing slope, i.e., a horizontal interface, and are furth
more determined by imposing periodic boundary conditio
at x56L/2; we remark that fixed boundary conditions a
inconsistent with a soliton configuration moving across
system. We also note that unlike the transient propertie
the noiseless Burgers equation, which are described by a
of right handsolitons connected by ramps, corresponding
a transient height profile composed of smoothed cusps c
nected by convex parabolic segments as shown in Fig. 5
stationary state of the noisy Burgers equation is character
by a gas of bothright and left handsolitons connected by
pieces of constant slope. The noise thus radically change
growth morphology of the Burgers equation. The noise s
chastically modifies the transient regime by exciting solito
of both parities, which thus describe the morphology of t
slope field in the stationary nonequilibrium state. The situ
tion is similar to the case of the noise-driven damped si
Gordon equation@90,91# where the noise also excites no
linear soliton modes.

We now proceed to discuss the morphology of a grow
interface in terms of solitons in the slope fieldu. The basic
‘‘building block’’ is the static solitonconfiguration given by
Eq. ~7.11!. From Eqs.~8.2!–~8.4! it follows that this mode
has vanishing momentumP50, energyE5 i (l/3)uu1u3, and
actionS52 i (l/3)Tuu1u3, independent of its parity. By in-
tegration the height profile,h5*udx, is given by

h~x!5
2n

l

u1

uu1u
ln coshFlu1

2n
~x2x0!G , ~9.1!

corresponding to a downward and an upward pointing c
smoothed by the damping constantn. In the limit of vanish-
ing n the cusps become sharp. We also note that the s
soliton does not satisfy the boundary conditions of vanish
slope. In Fig. 8 we have depicted the slope and height fiel
the two cases.

Boosting the static soliton in Eq.~7.11! we obtain asingle
moving solitonwith velocity given by the soliton condition
~7.12! and the profile~7.13!. In the particular case of a soli
ton satisfying the left boundary conditionu250, we obtain
from Eq. ~7.13! the slope field

u~xt!5
u1

2 H 11tanhFluu1u
4n

~x2vt2x0!G J ~9.2!

and by integration the height profile

h~xt!5
u1

2
x1

2n

l

u1

uu1u
ln coshFluu1u

4n
~x2vt2x0!G

~9.3!
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with propagation velocity

v52
lu1

2
. ~9.4!

The energy, momentum, and action are given by Eqs.~8.7!
and ~8.9!. This mode corresponds to the bottom part of
ascending step or top part of a descending step in the he
field propagating to the left or right, depending on the sign
u1 . The configurations are shown in Fig. 10.

In order to describe amoving stepin the height profile we
pair two well-separated non-overlapping solitons with eq
amplitude and opposite parity. The soliton condition~7.12!
then implies that they move in the same direction with
same velocity. In this case the slope and height fields h
the form

u~xt!5
u1

2 F tanh S luu1u
4n

~x2vt2x1! D2tanh S luu1u
4n

3~x2vt2x2! D G , ~9.5!

h~xt!5
2n

l

u1

uu1u
logFcosh~luu1u/4n!~x2vt2x1!

cosh~luu1u/4n!~x2vt2x1!G , ~9.6!

v52
lu1

2
. ~9.7!

We have here assumedx1!x2 for the center of mass coor
dinates. This configuration corresponds to two comov
solitons moving with velocityv52lu1/2 and is equivalent
to a moving step in the height profile. The height of the s
Dh is given byDh5u1(x22x1). Imposing periodic bound-
ary conditions for the slope field corresponding to a clos
ring of lengthL, this two-soliton mode corresponds to a st

FIG. 10. In ~a! and ~b! we show right and left-moving soliton
with vanishing amplitude atx52L/2. The associated height pro
files correspond to the bottom and top part of a step, respecti
~arbitrary units!.
n
ht
f

l

e
ve
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in h moving along the closed ring. At each revolution th
height field thus increases byDh and we have a simple
growth situation. For well-separated solitons the energy, m
mentum, and action are additive and we obtain from E
~8.2!–~8.4!

Estep5
8

3
i
uvu3

l2 , ~9.8!

Pstep524i
vuvu
l2 , ~9.9!

Sstep5
4

3
iT

uvu3

l2 . ~9.10!

It is also easily seen by inspection that for soliton config
ration with vanishing slope field at the boundaries the surf
contribution SB in Eq. ~5.3! vanishes. In Fig. 11 we hav
shown the configurations.

In a similar way we can construct a more faceted hei
profile in terms of a gas of appropriately paired solitons
the slope fieldu with the only requirement that~i! the soli-
tons are well separated so that they constitute saddle p
solutions and~ii ! they satisfy periodic boundary condition
For example, agrowing tipor thefilling in of an indentation
is described by the three-soliton configurations. Agrowing
plateau formed by two steps corresponds to a four-solit
configuration. We also notice that the two-soliton configu
tions corresponding to a moving step can be ‘‘renormalize
by the excitation of further two-soliton configurations corr
sponding to curvature of the step. In Fig. 12 we have
picted the above special configurations. In Fig. 13 we h
shown a general profile.

ly

FIG. 11. In~a! and~b! we show two two-soliton configuration
moving with opposite velocities corresponding to the left and rig
propagation of a step in the height profile~arbitrary units!.
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X. ‘‘QUANTUM DESCRIPTION’’ OF A GROWING
INTERFACE: FLUCTUATIONS

In the previous section we demonstrated that the domin
morphology of a growing interface governed by the no
Burgers equation in the weak noise limit can be describe
terms of a dilute gas of propagating solitons. In the p
integral the soliton contributions correspond to the station
saddle points in the (u,w) phase space determined by t
principle of least action. By inspection of the one dime

FIG. 12. We show the soliton configuration corresponding to~a!
the growth of a tip,~b! the filling in of an indentation,~c! the
growth of a plateau, and~d! the ‘‘renormalization’’ of a step~arbi-
trary units!.

FIG. 13. The general growth of an interface in terms of a dil
gas of solitons~arbitrary units!.
nt
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sional integral~6.1! and the saddle point result~6.2!, it is
clear that the soliton solution corresponds to the station
point u0 and the associated soliton action toS(u0). Conse-
quently, we have not included the Gaussian fluctuatio
about the stationary point, yielding the multiplicative fact
in Eq. ~6.2! of orderD1/2 and depending on the second ord
derivativeS9(u0) evaluated at the stationary point, but ha
only taken into account the exponential contribution det
mined by the action. In the context of the path integral t
Gaussian fluctuations about the stationary soliton corresp
to the linear diffusive mode spectrum in the presence of
soliton configurations and remains to be discussed.

In order to proceed in the analysis of the path integ
representation of the noisy Burgers equation we shall tak
heuristic point of view and extract some information a
physical insight by making use of the Feynman path integ
structure ofZ in Eqs.~5.2!–~5.5!, deferring an analysis of the
path integralper seto another context. The idea is to in
certain sense ‘‘deconstruct’’ the path integral and determ
the form of the underlying ‘‘quantum field theory’’ leadin
to Z by the usual Feynman method@42#. Since the slope field
u and the noise fieldw in the path integral form a canonicall
conjugate pair with Poisson bracket~5.8!, whereu plays the
role of a canonical ‘‘momentum’’ andw a canonically con-
jugate ‘‘coordinate,’’ the first step is to introduce the ‘‘qua
tum fields’’ û and ŵ, satisfying the canonical commutator

@ û~x!,ŵ~x8!#52 i
D

n
d~x2x8!. ~10.1!

Here the ratio of the noise to the damping,D/n, plays the role
of an effective Planck constant just as in the path integ
We thus have an effective ‘‘correspondence principle’’ o
erating relating the ‘‘classical’’ Poisson bracket$A,B% to the
‘‘quantum’’ commutator@Â,B̂#, according to the prescrip
tion @Â,B̂#52 i (D/n)$A,B%. In a similar way the effective
‘‘quantum Hamiltonian’’Ĥ is inferred from Eq.~5.9! @92#,

Ĥ5E F2 i
n

2
@~¹û!21~¹ŵ!2#1

l

2
û2¹ŵ Gdx. ~10.2!

Whereas by construction the fieldsû andŵ are Hermitian,
the HamiltonianĤ is in general a non-Hermitian operato
ExpressingĤ in the form Ĥ01Ĥ1 , it is composed of an
anti-Hermitian harmonic componentĤ0 , governing the dy-
namics of the linear diffusive modes, and a nonlinear H
mitian componentĤ1 , describing the growth characterize
by l. In the Heisenberg pictureĤ is the generator of time
translations and we obtain the usual Heisenberg equation
motion @93#

]û

]t
5 i

n

D
@Ĥ,û#, ~10.3!

]ŵ

]t
5 i

n

D
@Ĥ,ŵ#, ~10.4!

yielding ‘‘quantum field equations’’ of the same form as th
‘‘classical’’ field equations~6.5! and ~6.6! @94#,
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]û

]t
52 in¹2ŵ1lû¹û, ~10.5!

]ŵ

]t
51 in¹2û1lû¹ŵ. ~10.6!

In a similar way, the momentum operatorP̂, the generator of
translation, is given by

P̂5E dxû¹ŵ, ~10.7!

giving rise to the commutator relations

¹û5 i
n

D
@ P̂,û#, ~10.8!

¹ŵ5 i
n

D
@ P̂,ŵ#. ~10.9!

Finally, the symmetry algebra in Sec. V also holds in t
‘‘quantum case’’ by simply replacing the Poisson brack
by commutators according to the above ‘‘corresponde
principle.’’

The ‘‘quantum field equations’’~10.5! and~10.6! together
with the appropriate states of the Hamiltonian~10.2! are
completely equivalent to the path integral and thus prov
an alternative description of the noisy Burgers equation. T
noise-induced fluctuations in the slope field, represented
the different configurations or paths in the path integ
weighted by the ‘‘classical’’ actionS, are replaced by
‘‘quantum fluctuations’’ in the underlying ‘‘quantum field
theory,’’ resulting from the operator structure and the as
ciated commutator algebra. We also note that the ‘‘quan
description’’ presented here is precisely the same as the
obtained in paper II based on the mapping of a solid-on-s
model to a continuum spin chain model in the quasiclass
limit.

A. The Edwards-Wilkinson equation

In order to demonstrate how the ‘‘quantum schem
works it is instructive to evaluate the slope correlation fun
tion ^uu&(kv) in Eq. ~2.8! for the Edwards-Wilkinson equa
tion. The dynamics of the EW case is governed by the
perturbed part ofĤ in Eq. ~10.2!

Ĥ05E F2 i
n

2
@~¹û!21~¹ŵ!2#Gdx. ~10.10!

Introducing the usual ‘‘second quantization’’ scheme@95# in
terms of Bose annihilation and creation operatorsak andak

†

satisfying the commutator algebra@ak ,ak
†#5dkk8 , we have

for the slope and noise fields

û52 iA D

2nL (
k

@eikxak2e2 ikxak
†#, ~10.11!

ŵ5A D

2nL (
k

@eikxak1e2 ikxak
†#, ~10.12!
s
e

e
e
y
l

-
m
ne
id
al

’
-

-

yielding the unperturbed Hamiltonian and associated dif
sive dispersion law

Ĥ05(
k

D

n
vk

0ak
†ak , ~10.13!

vk
052 ink2. ~10.14!

Noting that the particle vacuum stateu0& corresponds to a
stationary state with average vanishing slope^0uûu0&, i.e., a
horizontal interface, it is an easy task to evaluate the sl
correlation function. Since the path integral defines a B
time ordering@42# and using the time evolution operator, w
have the identification

^u~x,t !u~0,0!&5^0uTû~x,t !û~0,0!u0&

5^0uû~x!e2 iĤ 0utu/~D/n!û~0!u0&.

~10.15!

Using thatak evolves in time according to

ak~ t !5ak~0!expS 2 i
D

n
vk

0t D ~10.16!

we then obtain in Fourier space

^u~k,v!u~2k,2v!&5 i
D

2n F ^0uakak
†u0&

vk
02v

1
^0uakak

†u0&

vk
01v G

~10.17!

or in reduced form in complete agreement with Eq.~2.8!,

^u~k,v!u~2k,2v!&5
Dk2

v22~vk
0!2 . ~10.18!

This simple calculation demonstrates how the ‘‘quantu
fluctuations’’ as expressed by the commutator algebra
the effective Planck constantD/n combine to produce the
factor D in the correlation function, which ‘‘classically’’ in
terms of the EW Langevin equation originates from aver
ing over the noise¹h.

B. The ‘‘quantum soliton’’

In the nonlinear case the ‘‘quantum dynamics’’ is go
erned byĤ5Ĥ01Ĥ1 in Eq. ~10.2!. Introducing the Bose
field ĉ in configuration space,

ĉ~x!5~1/AL !(
k

ak exp~ ikx! ~10.19!

the Hamiltonian takes the form

Ĥ5~2 i !~D/n!E dxu¹ĉ†u22l~D/2n!3/2

3E dx~ ĉ†2ĉ !2¹~ĉ†1ĉ ! ~10.20!

describing the many-body interaction between the linear
fusive modes governed by the first termĤ0 .
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Imposing the constraint of a horizontal interface we o
tain ^û&}^ĉ2ĉ†&50, which implies that̂ ĉ&5^ĉ†&. Since
the interaction termĤ1 does not conserve the number
particles, this constraint can only be satisfied for nonvan
ing ^ĉ& if the diffusive modes condense into acoherent con-

densateso that ^ĉ&5^ĉ†&Þ0. The resulting macroscopi
wave function or condensate corresponds to the ‘‘classic
soliton mode discussed in the previous sections. The si
tion is quite similar to the phenomenological theory for s
perfluid helium based on a condensate wave function.
condensate has two components,^ĉ& and ^ĉ†& or ^û&5u
and ^ŵ&5w, and satisfies the coupled field equations~6.5!
and ~6.6!, obtained from the ‘‘quantum field equations
~10.5! and ~10.6! by ignoring ‘‘quantum fluctuations’’ and
replacing the terms,lû¹û andlû¹ŵ, by their average val-
ues,lu¹u and lu¹w. We can thus regard Eqs.~6.5! and
~6.6! as two coupled Gross-Pitaevsky-type equations for
condensate wave function or soliton mode@96#.

The ‘‘classical’’ soliton is localized in space and carri
energy and momentum, depending on the boundary co
tions according to the expressions~8.2! and~8.3!. Subject to
‘‘quantization’’ this mode becomes abona fide‘‘quantum
mechanical’’ quasiparticle with the same energy and m
mentum. Notice, however, that the ‘‘quantum soliton’’ is d
localized owing to the ‘‘uncertainty principle,’’ which im
plies thatDx0DP;D/n; hereDx0 is the uncertainty in the
center of mass position for the soliton andDP the uncer-
tainty in its momentum. For a ‘‘quantum soliton’’ with well
defined momentumP and energyE we can in the usual way
associate a wave numberK and a frequencyV, according to
the ‘‘de Broglie’’ relations,P5(D/n)K and E5(D/n)V,
and describe the quasiparticle by means of the wave func
C}exp@2iVt1iKx#. Considering in particular a pair o
‘‘quantum solitons,’’ describing a propagating step in t
height profile with energy and momentum given by Eq
~9.8! and ~9.9!, we obtain

Vstep5 i S n

D D 8

3

uvu3

l2 , ~10.21!

Kstep52 i S n

D D4
vuvu
l2 . ~10.22!

and the wave function takes the form

C}exp@2 iVt1 iKx#5exp@const3~x2vpht !#, ~10.23!

corresponding to a propagation with phase velocityvph
5(2/3)v. Noting, however, that the appropriate wave fun
tion for a localized soliton is the wave packet constructio

CWP}(
K

AK exp@2 iVt1 iKx# ~10.24!

obtained from a superposition of plane waves, we obtain
group velocity

vg5
dV

dK
5

dV/dv
dK/dv

5v. ~10.25!
-

-

l’’
a-
-
e

e

i-

-

n

.

-

e

This shows that the quasiparticle wave packet propag
with the same velocity as the ‘‘classical’’ soliton in comple
accordance with ‘‘the correspondence principle.’’ Where
the propagation velocityv determines the kinetics of th
‘‘classical’’ soliton, the energy and momentum are the fu
damental characteristics in the ‘‘quantum’’ case; the veloc
v becomes the group velocity of the wave packet. We a
notice from the wave packet form in Eq.~10.24! that the
‘‘quantum soliton’’ corresponds to a propagating mode.
nally, eliminating the velocity from Eqs.~10.21! and~10.22!
we derive the ‘‘quantum soliton’’ dispersion law

VK5 il
1

3 S D

n D 1/2

uKu3/2, ~10.26!

where sgn(ImK)52sgnv.

C. ‘‘Quantum fluctuations’’

The final issue to consider in the qualitative ‘‘quantiz
tion’’ of the soliton system is the role of ‘‘quantum fluctua
tions’’ in the presence of a ‘‘quantum soliton.’’ This problem
is treated here by expanding the fieldsû andŵ about a soli-
ton or condensate configuration (u0 ,w0). Inserting û5u0
1dû andŵ5w01dŵ in Eqs.~10.5! and~10.6! we obtain to
linear order two coupled equations for the ‘‘quantum flu
tuations’’ dû anddŵ,

]dû

]t
52 in¹2dŵ1lu0¹dû1l~¹u0!dŵ, ~10.27!

]dŵ

]t
51 in¹2dû1lu0¹dŵ1l~¹w0!dû. ~10.28!

These equations have the same form as the ones obtaine
expanding in the Gaussian fluctuations about the station
soliton solution in the path integral.

The equations of motion~10.27! and~10.28! describe the
interaction of the linear ‘‘quantum diffusive modes
(dû,dŵ) with the soliton configuration (u0 ,w0) and consti-
tute a generalization to the noisy case of the linear stab

FIG. 14. We depict the quadratic diffusive dispersion law w
gapl2u1

2 /4n and the gapless soliton dispersion law with fraction
exponent 3/2~arbitrary units!.
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equation in the analysis in paper I; the soliton again acts
a potential giving rise to phase shift effects and a gap in
diffusive spectrum.

As in the noiseless case, Eqs.~10.27! and ~10.28! admit
an analytical solution. Since the equations are Galilean
variant we need only consider the case of a static soli
First noting that the soliton solution according to Eq.~7.9! is
confined to the diagonal lines¹w05 im¹u0 , m561, in
phase space, the fluctuationsdû, dŵ are disentangled by
transforming to ‘‘normal coordinates’’ along and perpe
dicular to the ‘‘soliton lines.’’ Thus~1! introducing ‘‘normal
coordinates’’ dX̂5dû1 idŵ, dŶ5dû2 idŵ, ~2! inserting
the static solution ~7.11!, u05muu1utanh(ksx), ¹u0
5muu1uks cosh22(ksx), ¹w05m¹u0 , and ~3! performing
the scaling transformationsdX̂→hdX̂, dŶ→h21dX̂, where
h5coshm(ksx), in order to absorb the linear terms in¹, i.e.,

dX̂5h21~dû1 idŵ!, ~10.29!

dŶ5h~dû2 idŵ!, ~10.30!

h5coshm~ksx!, ~10.31!

ks5
luu1u

2n
~10.32!

we arrive at the effectively decoupled equations for
‘‘normal coordinates’’

]dX̂

]t
51DdX̂1~m21!nks

2dŶ, ~10.33!

]dŶ

]t
52DdX̂1~m11!nks

2dŶ. ~10.34!

Here the Schro¨dinger operatorD has the same form as th
stability matrix for the noiseless Burgers equation in pape
or the sine Gordon equation@77,80#,

D52n¹21nks
2F12

2

cosh2~ksx!G . ~10.35!

The wave numberks5luu1u/2n introduced in Sec. III de-
pending on the soliton amplitude sets the inverse len
scale. We also note that Eqs.~10.33! and ~10.34! reduce to
the linear case forl50 sinceD→2n¹2 andh→1.

Since the Bargman potential cosh22(ksx) admits an exact
solution the spectrum ofD defined by the eigenvalue equ
tion DCn5 ivnCn is well known @97# and is discussed in
paper I. It is composed of a zero-eigenvalue localized bo
state mode and a band of phase shifted scattering mode

C0}
1

cosh~ksx!
, ~10.36!

v050, ~10.37!

Ck}exp~ ikx!
k1 iks tanh~ksx!

k2 iks
, ~10.38!
e
e

-
n.

e

I

th

d
,

vk52 in~k21ks
2!. ~10.39!

ExpandingdX̂ anddŶ on a set of eigenstatesCn ,

dX̂5(
n

ânCn , ~10.40!

dŶ5(
n

b̂nCn ~10.41!

we finally obtain equations of motion for the expansion c
efficientsân and b̂n ,

dân

dt
51 ivnân1~m21!nks

2b̂n , ~10.42!

db̂n

dt
52 ivnb̂n1~m11!nks

2ân , ~10.43!

which we proceed to discuss.

1. The translation modes

The zero-frequency mode of the Schro¨dinger operatorD
in Eq. ~10.35! is associated with the translation and boosti
of the static soliton profile (u0 ,w0). This is seen in the fol-
lowing way. Since the ‘‘quantum field equations’’~10.5! and
~10.6! have the same form as the ‘‘classical’’ field equatio
~6.5! and~6.6! they are equally satisfied by a soliton solutio
Consequently, a variation of the static soliton profi
(du0 ,dw0), is a solution of the linearized equations~10.27!
and ~10.28! or ~10.33! and ~10.34! in the static case, corre
sponding to the bound stateC050. Furthermore, since the
soliton depends parametrically on the center of mass pos
x0 it follows that the fluctuations (du0 ,dw0) are proportional
to the derivatives (¹u0 ,¹w0) with respect tox0 , corre-
sponding to a displacement of the soliton position. T
mode is thus a translation or Goldstone mode associated
the broken translational symmetry and is a well-known fe
ture of symmetry breaking ‘‘excitations’’; a Goldstone mod
is excited in order to restore the broken symmetry@36#. A
similar translation mode was also encountered in our disc
sion of the noiseless case in paper I.

Focusing, for example, on theright handstatic soliton for
m511 and solving Eqs.~10.42! and ~10.43! for n50 we
have the expansion coefficients

â05const, ~10.44!

b̂05b̂0
012nks

2â0t, ~10.45!

where b̂0
0 is the initial value fort50, and we obtain, using

that ¹u0}cosh22(ksx), the fluctuation mode

dû5â01~ b̂0
01â0nks

2t !¹u0 . ~10.46!

For â050 this mode corresponds to an infinitesimal trans
tion dx05b̂0

0 of the soliton, i.e., a change of the center
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57 4963SOLITON APPROACH TO THE NOISY BURGERS . . .
mass coordinate; forâ0Þ0 the mode is equivalent to a boo
of the soliton to a small velocity}nks . A similar discussion
applies todŵ.

2. The diffusive scattering modes

The band of diffusive scattering modes is also easily d
cussed. From the equations of motion for the expansion
efficients in Eqs.~10.42! and~10.43! and again considering
right hand static soliton form51 we obtain forn5k the
solution

âk5âk
0eivkt, ~10.47!

b̂k5âk
0F ks

2

k21ks
2Geivkt1H b̂k

02âk
0F ks

2

k21ks
2G J e2 ivkt. ~10.48!

Here ak
0 and bk

0 are the initial values and the spectrumvk

given by Eq.~10.39!. For the fluctuationdû we then have

dû5(
k

@ âk cosh~ksx!1b̂k cosh21~ksx!#Ck , ~10.49!

whereCk is given by Eq.~10.38!. We note thatdû in the
soliton case again is composed of both positive and nega
frequency parts, exp@n(k21ks

2)t# and exp@2n(k21ks
2)t#, corre-

sponding to growing and decaying modes in the station
driven regime, exhibiting a gapnks

2 in the spectrum. In the
linear EW caseks50 and dû assumes the form in Eq
~10.11!. We shall not dwell here on the somewhat comp
catedx dependence but only observe that the main effec
the soliton on the diffusive modes apart from phase s
effects and spatial modulations is to lift the spectrum a
create a gapnks

25l2uu1u2/4n, depending on the soliton am
plitude u1 , the couplingl, and the frequencyn.

D. Many-body description of a growing interface

The above analysis of the ‘‘quantum solitons’’ and t
‘‘quantum diffusive modes’’ allows a heuristic qualitativ
discussion of a growing interface. The stochastic dynam
of the noisy Burgers equation~4.1! in the stationary regime
can be rigorously interpreted in terms of a dilute Landa
type ‘‘quantum’’ quasiparticle gas composed of element
excitations of two types: ‘‘Quantum solitons’’ and ‘‘quantu
diffusive modes.’’ The ‘‘quantum mechanics’’ being equiv
lent to a Master equation description@56,57# is basically re-
laxational, corresponding to a complex Hamiltonian.

The elementary excitations fall into two classes: line
diffusive modes and nonlinear soliton modes.~1! The linear
diffusive modes are associated with the damping term in
Burgers equation or, equivalently, the harmonic an
Hermitian part in the Hamiltonian. These modes account
the relaxational aspects of the interface and are characte
by the dispersion law~10.39!, i.e.,

vk52 in~k21ks
2! ~10.50!

with a gapnks
2 . As in our discussion of the noiseless case

I the gap can be associated with a nonvanishing curren
wards the center of the soliton where the damping in
hanced.~2! The nonlinear soliton modes are related to t
-
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nonlinear growth term in the Burgers equation or, equiv
lently, the nonlinear Hermitian part of the Hamiltonian. For
pair of solitons representing a growing step the dispers
law is given by Eq.~10.26!, i.e.,

VK5 i
l

3 S D

n D 1/2

uKu3/2. ~10.51!

The mode is gapless and characterized by the fractional
ponent 3/2. The soliton mode accounts for the growth
pects of the driven interface. Forn→` the linear damping
dominates the growth andVK→0, also forl→0 we attain
the linear EW case andVK→0; finally for D→0 the sto-
chastic aspects are quenched, solitons~and diffusive modes!
are not kinetically or stochastically excited, andVK→0.

In the linear EW case the fluctuating interface is in eq
librium and here described as a noninteracting gas of lin
gapless diffusive modes. The statistical fluctuations app
as ‘‘quantum fluctuations’’ of the quasiparticle modes. Sin
the dispersion is quadratic we can also envisage the EW
as a ‘‘quantum’’ gas of free particles with imaginary mas

In the nonlinear Burgers case the ‘‘quantum soliton
emerges as a new additional quasiparticle, correspondin
the faceted genuine growth of an interface. The linear mo
become subdominant in the sense that they develop a ga
the spectrum and correspond to superposed damped ‘‘ri
modes’’ on the soliton configurations. The diffusive mod
extend over the whole configuration and are phase shi
due to reflectionless scattering against the solitons as in
noiseless case. A scattering analysis also, in accordance
Levinson’s theorem, shows the diffusive spectrum is d
pleted by a number of states, corresponding to the transla
modes of the solitons.

Before turning to the heuristic scaling analysis in the n
section, we wish to add a few more remarks concerning
structure of a field theoretic or many-body description of t
noisy Burgers equation. There are basically two equival
modes of approach:~1! A direct evaluation of the path inte
gral in the weak noise limit in a saddle point approximati
for a dilute soliton gas, including the diffusive modes, co
responding to Gaussian fluctuations about the saddle po
and summing over periodic orbits in order to include secu
effects or ~2! a construction of the equivalent ‘‘quantum
many-body theory’’ on the basis of the ‘‘quantum represe
tation’’ of the path integral. Including the soliton modes
space- and time-dependentcondensateconfigurations, as
mentioned in Sec. X B, the many-body approach is simila
the microscopic theory of interacting bosons@95,98,99# with
anomalous propagators, etc. There are, however, some
table differences. In the case of interacting bosons the
form condensate acts as a particle reservoir and change
free boson dispersion lawv}p2 to a linear acoustic phonon
branchv}p. In the present case, the condensate correspo
ing to a soliton or gas of solitons is nonuniform and tim
dependent, governed by the ‘‘classical’’ field equations. T
free diffusive modes with dispersionv}p2 develop a gap
depending on the soliton amplitude or velocity, whereas
soliton or condensate mode emerges as a new quasipa
with dispersionv}p3/2.
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4964 57HANS C. FOGEDBY
XI. SCALING AND UNIVERSALITY CLASSES

In addition to providing a many-body description of
growing interface in terms of a Landau-type quantum qua
particle gas of propagating ‘‘quantum solitons’’ and damp
‘‘quantum diffusive modes,’’ the path integral formulatio
also offers as a by-product some insight into the sca
properties, i.e., the behavior of the interface in the limit
large distances and long times.

We shall here focus on the scaling properties of the sl
correlation function summarized in the dynamical scal
form ~1.7!, i.e., assumingt50 in the stationary regime,

^u~x,t !u~0,0!&5uxu2~z21! f ~ utu/uxuz!. ~11.1!

The scaling issue is then to determine the roughness or w
dering exponentz, the dynamic exponentz, and the scaling
function f (w).

In the EW case the scaling functionf is given by Eq.
~2.9!, i.e.,

f ~w!5~D/2n!~4pn!21/2w21/2 exp@21/4nw#, ~11.2!

implying the exponents (z,z)5(1/2,2). In the Burgers cas
Galilean invariance together with the fixed point structu
lead to the scaling law~1.10!, i.e., z1z52, which together
with the stationary distribution ~1.11!, an effective
fluctuation-dissipation theorem, yields the exponents (z,z)
5(1/2,3/2).

According to the path integral formulation in Secs. IV a
V, using Eqs.~4.7! and~5.2! the slope correlation function i
given by

^u~x,t !u~0,0!&5Z~0!21E )
xt

dudw

3expF i
n

D
SGu~xt!u~00!, ~11.3!

or in terms of the underlying ‘‘quantum field theory,’’ notin
that the path integral by construction defines time-orde
products@42#,

^u~x,t !u~0,0!&5^0uTû~x,t !û~0,0!u0&. ~11.4!

Here u0& denotes the appropriate stationary state for the s
tem.

In order to elucidate the structure of Eq.~11.4! we con-
struct a spectral representation by~i! displacing the slope
field û(x,t) to the origin in space and time by means of t
Hamiltonian Ĥ and the momentumP̂, using the integrated
form of the commutator relations~10.3! and ~10.8!, and~ii !
inserting intermediate eigenstatesuP& with momentumP and
energyEP . The first step implies the relation

û~x,t !5expF i
n

D
~ P̂x1Ĥt !G û~0,0!expF2 i

n

D
~ P̂x1Ĥt !G ;

~11.5!

secondly, inserting intermediate states, usingĤuP&5EPuP&
and P̂uP&5PuP&, introducing the frequency and wave num
ber (VK ,K) associated with the elementary excitations
i-
d

g
f

e

n-

d

s-

r

quasiparticles, and lumping the matrix elements in an eff
tive form factor,G(K)5^0uûuK&^Kuûu0&, we arrive at the
spectral representation

^u~x,t !u~0,0!&5E dK

2p
G~K !exp@2 i ~VKutu2Kuxu!#.

~11.6!

The time ordering in Eq.~11.4! together with parity invari-
ance,x→2x, imply evenness in the dependence onx andt;
alsoG(K) must be even inK.

The spectral form~11.6! is only schematic. For a multi-
soliton diffusive mode intermediate eigenstateu$Ki%,$kj%&,
whereKi andkj denote the soliton and diffusive mode wav
numbers, respectively, with total wave numberK5( iKi
1( j kj and total frequencyV5( iVKi

1( jvkj
, we have

strictly speaking the spectral form, say fort.0,

^u~x,t !u~0,0!&5E )
i j

dKidkjG~$Ki%,$kj%!

3e2 i @~( iKi1( j kj !x1~( iVKi
1( jvkj

!t#. ~11.7!

Since the solitons are transparent with respect to the
fusive modes as discussed in Sec. X C, the operatorû only
excites a single modek extending across the system, i.e
G($Ki%,$kj%);G($Ki%,k), and assuming furthermore tha
G($Ki%,k) factorizes approximately in accordance with t
dilute soliton gas picture,G($Ki%,k);GD(k)P iGS(Ki),
summing over the solitons we obtain

^u~x,t !u~0,0!&;
E dkGD~k!e2 ikx2 ivt

12E dKGS~K !e2 iKx2 iVt

. ~11.8!

The expression~11.8! is clearly not correct in detail since w
have not solved the many-body problem but only made so
plausible assumptions concerning the form factorG. Never-
theless, from the point of view of discussing the scali
properties Eq.~11.8! has the required structure and serv
our purpose. In the EW caseGS(K)50 and Eq. ~11.8!
reduces to the scaling form~11.2!. In the Burgers
case V} i uKu3/2, i.e., exp(2iVt)5exp(1const3uKu3/2t),
and the denominator @12*dKGS(K)e2 iKx2 iVt#21

;*dKGS(K)e2 iKx2 iVt controls the scaling behavior. In
both cases we can use the simplified general spectral f
~11.6!.

For the purpose of a discussion of the scaling proper
we first consider a general quasi-particle dispersion law w
a gapD̃, stiffness constantA, and exponentb,

VK5D̃1AuKub. ~11.9!

For large distancesuxu@a, wherea is a microscopic length
defining the UV cutoffK;1/a implied in Eq. ~11.6!, the
spectral representation samples the small wave numbe
gions K!1/a. Assuming that the form factor is regular fo
small K, i.e., G(K);G(0)1(1/2)K2G9(0), and rescaling
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K, Kx→K, we obtain, inserting the general dispersi
~11.9!, the spectral representation in a more appropriate s
ing form

^u~x,t !u~0,0!&;G~0!e2 i D̃tx21E dK

2p
e2 iAuKubutu/uxub2 iK .

~11.10!

We emphasize again that the spectral representa
~11.10! can only be considered as a heuristic express
since we have not here carried out a detailed analysis of
non-Hermitian non-Lagrangian field theory underlying t
path integral. Nevertheless, we believe that we can alre
draw some interesting general consequences concernin
scaling properties of a growing interface.

First we observe that in the presence of a gapD̃Þ0 there
is no scaling behavior. For the diffusive mode in the pr
ence of a soliton the spectrum is, for example, given by
~10.50! with a gapD̃52 inks

2 , implying an exponential fall-
off with t in Eq. ~11.10!. Consequently, only gapless excit
tions for D̃50 contribute to the scaling behavior. The ga
less excitations are associated with the so-called z
temperature fixed point behavior of the ‘‘quantum fie
theory’’ and determine the scaling properties.

Furthermore, comparing the spectral form~11.10! for
D̃50 with the scaling form~11.1! we immediately identify
the roughness exponentz51/2 and the dynamic exponentz
5b. We also note that whereas the exponentz51/2 essen-
tially follows from a simpleregularity propertyof the form
factor G(K) with leading termG(0) for smallK, the expo-
nentz is tied to the exponentb in the quasiparticle dispersio
law.

In the linear EW case the diffusive gapless modes w
dispersion law~10.14!, i.e., vk52 ink2, exhaust the spec
trum and we obtainb5z52, corresponding to the EW uni
versality class in Table I. Also the spectral form yields t
scaling function~11.2! with the identificationG(0)5D/2n.

In the nonlinear Burgers-KPZ case the soliton modes w
gapless dispersion~10.51!, i.e., VK}(D/n)1/2luKu3/2, ex-
haust the bottom of the spectrum and yield the exponenb
5z53/2, corresponding to the Burgers-KPZ universal
class in Table I; the linear diffusive modes develop a g
according to Eq.~10.50!, become subdominant, and do n
contribute to the scaling behavior.

The above discussion thus provides adynamical interpre-
tation of the scaling properties, exponents, and universa
classes. The universality class is determined by the low
lying gapless excitation. The spectral form also elucida
the robustnessof the roughness exponentz, which is the
same for both universality classes. In the case of the stat
ary equal-time fluctuations we sett50 in Eq. ~11.8! and the
resulting scaling form yieldingz does not depend on the
specific quasiparticle dispersion law; this argument
equivalent to the effective fluctuation-dissipation theor
yielding the stationary distribution~1.11! independentof the
nonlinear drivel.

The spectral form~11.10! also provides an expression fo
the scaling functionf (w). We obtain comparing Eq.~11.8!
with Eq. ~11.1!
l-

on
n
he

dy
the

-
.
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h

h

p

y
t-
s

n-

s

f ~w!5G~0!E dK

2p
e2 i ~AuKuzw1K !. ~11.11!

The above expression is at best heuristic but we do no
that it has the correct limiting behavior, i.e.,f (w);const for
w→0 and f (w);w21/z for w→`.

The scaling functionf (w) describing the behavior of the
strong coupling fixed point has been accessed both num
cally @51–53# and by means of an analytical mode coupli
approach@54,55#, based on a self-consistent one-loop calc
lation, i.e., to first order inl, and ignoring vertex corrections
we note that it has been shown in Ref.@55# that the vertex
corrections up to second loop order are nonsingular ind
51 and numerically small. The agreement between the
merical simulations and the analytical method is good, in
cating that the mode coupling approach seems to cap
essential properties of the strong coupling fixed point beh
ior.

The heuristic and preliminary character of the scali
function given here does not allow a detailed comparis
We note, however, that sinceA}l(D/n)1/2 in the Burgers-
KPZ case the dimensionless argument in the scaling func
f (w) is l@(D/n)1/2t/x3/2#. This is in complete agreemen
with the driven lattice gas DRG analysis in@17# and with the
general arguments advanced in the mode coupling ana
in @54,55#.

We also note the curious fact that the spectral form~11.6!
for a gapless dispersion with exponentb bears resemblanc
to the form of the probability distribution for a one
dimensional Le´vy flight with index m5b @100#. The case
m5b52 corresponds to ordinary Brownian walk, where
m5b53/2,2 is equivalent to super diffusion.

The present analysis of the scaling properties based on
spectral form~11.6! originates from a weak noise sadd
point approximation to the path integral and as such o
holds for D→0. However, within the general assumptio
underlying the application of scaling theory and the notion
universality classes, we expect the exponents and sca
function to be universal characteristics of the system a
thus independentof the noise strengthD. This property can,
however, be reconciled within the present many-body
proach if we assume that an enhancement of the n
strength, that is a stronger drive of the system, only lead
a dressingof the quasiparticle spectrum, i.e., a change in
stiffness constant, and not to a change in the exponentb. In
the ‘‘quantum mechanical’’ language this corresponds to
assumption that the WKB approximation also holds in t
strong ‘‘quantum regime’’ as far as the exponent of the q
siparticle dispersion law is concerned.

We conclude this section with a few speculative rema
concerning the ‘‘breakdown of hydrodynamics.’’ The nois
Burgers equation is basically a nonlinear conserved hyd
dynamical equation derived by combining the conservat
law ]u/]t1¹u50 with a constitutive equation for the cur
rent, j 52n¹u2(l/2)u22h, with transport coefficientsn
~the damping! andl ~the mode coupling!. The expression for
the deterministic part ofj is thus based on a gradient expa
sion to lowest order and the simplest quadratic nonlinea
in u. The issue is in which way the mode coupling ter
affects the hydrodynamical properties. In this conte
‘‘breakdown of hydrodynamics’’ usually refers to the situ
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tion where the underlying regularity structure of the gradi
expansion, i.e., in wave number space regularity in an exp
sion in k, breaks down.

In the present many-body formulation, entailing the sp
tral form ~11.6!, in frequency space we obtain

^uu&~k,v!;Re
1

v2Vk
. ~11.12!

In the linear EW case forvk
052 ink2 we recover the diffu-

sive form ~2.8!, corresponding to a diffusive polevk
05

2 ink2 in the complexv plane. However, in the nonlinea
mode coupling case forlÞ0, Vk}uku3/2 and^uu&(k,v) de-
velops a branch cut structure, corresponding to a nonana
wave number dependence in the current, i.e., a breakdow
hydrodynamics.

XII. DISCUSSION AND CONCLUSION

In the present paper we have advanced an approach t
growth morphology and scaling behavior of the noisy B
gers equation in one dimension. Using the Martin-Sigg
Rose~MSR! technique in a canonical form we have demo
strated that the physics of the strong coupling fixed poin
associated with an essential singularity in the noise stren
and can be accessed by appropriate theoretical soliton t
niques.

The canonical representation of the MSR functional in
gral in terms of a Feynman phase space path integral wi
complex Hamiltonian identifies the noise strength as the
evant small nonperturbative parameter and allows fora prin-
ciple of least action. In the asymptotic weak noise limit th
leading contributions to the path integral are given by a
lute gas of solitons with superposed linear diffusive mod
The canonical variables are the local slope of the interf
and an associated ‘‘conjugate’’ noise field, characteristic
the MSR formalism. In terms of the local slope the solit
and diffusive mode picture provide a many-body descript
of a growing interface governed by the noisy Burgers eq
tion. The noise-induced slope fluctuations are here re
sented by the various paths or configurations contributing
the path integral.

The canonical formulation of the path integral and t
associated principle of least action also allow us to assoc
energy, momentum, and action with a given soliton confi
ration or growth morphology. This gives rise toa dynamical
selection criterionsimilar to the role of the Boltzmann facto
exp(2E/T) in equilibrium statistical mechanics that asso
ates an energyE with a given configuration contributing to
the partition function; in the dynamical case the actionS
provides the weight function for the dynamical configur
tion. In more detail, in the dynamical case, by ‘‘rotating’’ th
noise variable,w→2 iw, we obtain the partition function

Zdyn}E )
xt

dudw expF2
n

D
S̃G , ~12.1!

S̃5E dxdtFu
]u

]t
2H̃~u,w!G , ~12.2!
t
n-

-

tic
of

the
-
-
-
s
th
ch-

-
a

l-

i-
s.
e
f

n
-

e-
to

te
-

-

H̃52
n

2
@~¹u!22~¹w!2#1

l

2
u2¹w, ~12.3!

whereas in the equilibrium case we have the general form
one dimension,

Zeq}E )
x

dpdq expF2
1

T
HG , ~12.4!

H5E dxH~p,q!, ~12.5!

whereH is the Hamiltonian density. By comparison we no
that the noise strengthD plays the role of a ‘‘temperature’’ in
the dynamical case. We also observe thatZdyn for the dy-
namical 1D problem, treating time as an additional coor
nate, i.e.,t→y, is equivalent to a 2D equilibrium partition
function with the Hamiltonian

H5E dxdyFu¹yw1
n

2
@~¹xu!22~¹xw!2#2

l

2
u2¹xwG

~12.6!

and temperatureD/n.
In addition to providing a physical many-body picture

the morphology of a growing interface in terms of solito
modes accounting for the growth aspects and diffus
modes corresponding to the relaxational aspects, the pre
approach also gives insight into the scaling properties. T
perspective here is not a ‘‘coarse graining’’ procedure,
placing the original description by a scaling description w
ensuing dynamical renormalization group~DRG! equations,
but rather a focus on the gapless elementary excitation
quasiparticles of the many-body theory.

The case of simple scaling characterized by a roughn
exponent, a dynamical exponent, and a scaling function,
responding to a simple fixed point structure in the DR
analysis, is here represented by a single quasiparticle m
exhausting the bottom of the spectrum with a gapless dis
sion law. The dynamic exponent is given by the exponen
the quasiparticle dispersion law, whereas the roughness
ponent follows from a regularity property of the form fact
in a spectral representation of the slope correlations, with
scaling function being given by the spectral form itself.

Our analysis shows that the nonequilibrium growth d
namics in one dimension is controlled by solitons or dynam
domain wall. In this respect there is a parallel between
present kinetic growth problem and other well-studied lo
dimensional equilibrium problems also controlled by loc
ized excitations such as the one-dimensional Ising mo
with domain wall excitations or the two-dimensionalXY
model characterized by vortex excitations@36#. The present
approach is conducted in one dimension and assumes a
tially short range correlated conserved noise in order
implement the shift transformation leading to the canoni
formulation and the separation of the Hamiltonian in a h
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monic part and an interacting part. In higher dimensions
Burgers equation becomes a vector equation with a nonlin

term l(uW •¹W )uW and we obtain a more complicated Ham
tonian governing the dynamics.
et

,

e,

f
n-

ett

R

tt
e
ar

ACKNOWLEDGMENTS

Discussions with J. Krug, M. Kosterlitz, M. H. Jensen,
Bohr, M. Howard, K. B. Lauritsen and A. Svane are gra
fully acknowledged.
n,

e,

a-

ic
me
ch,

-

s.
@1# H. C. Fogedby, Phys. Rev. Lett.80, 1126~1998!.
@2# H. C. Fogedby, Phys. Rev. E57, 2331 ~1998!; denoted I in

the text.
@3# J. M. Burgers, Proc. R. Neth. Acad. Soc.32, 414 ~1929!; 32;

643 ~1929!; 32, 818 ~1929!; The Nonlinear Diffusion Equa-
tion ~Reidel, Dordrecht, 1974!.

@4# P. G. Saffman, inTopics in Nonlinear Physics, edited by N.
J. Zabusky~Springer, New York, 1968!.

@5# E. A. Jackson,Perspectives of Nonlinear Dynamics~Cam-
bridge University Press, Cambridge, 1990!, Vol. 2.

@6# G. B. Whitham,Nonlinear Waves~Wiley, New York, 1974!.
@7# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. L

36, 867 ~1976!; Phys. Rev. A16, 732 ~1977!.
@8# M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.56,

889~1986!; E. Medina, T. Hwa, M. Kardar, and Y. C. Zhang
Phys. Rev. A39, 3053~1989!.

@9# T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.254, 215
~1995!

@10# A.-L. Barabasi and H. E. Stanley,Fractal Concepts in Sur-
face Growth ~Cambridge University Press, Cambridg
1995!.

@11# J. Krug and H. Spohn, inSolids Far from Equilibrium; Ki-
netic Roughening of Growing Surfaces, edited by C. Go-
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Manchester, 1988!; M. Büttiger and R. Landauer, Phys. Re
A 23, 1397~1981!.

@91# J. Krug and H. Spohn, Europhys. Lett.8, 219 ~1989!.
@92# In writing down the ‘‘quantum Hamiltonian’’Ĥ we have
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